3.5.2.2. Strand7 Results

Within strand 7 the brick arch was modelled up until beam - B to determine the forces transferred to the top of the beam from the centre of the arch as seen below in Figure 319 and Figure 320. Forced below beam B were neglected due to their minimal effect on the structure of interest.

Figure 319: Case 1, Beam B

3.5.2.3. Resultant Forces

As seen below in Table 121 are the X and Y component forces at the top of beam B. The resultant force in terms of the X and Y components which is perpendicular to beam B will be determined to find the maximum bending moment throughout the section. The component forces and beam angle can be seen below in Figure 321

Table 121: Force Components

Load Combinations	F_{x}	F_{y}
	(kN)	(kN)
Case 1	$-2.59 * 10^{-10}$	$1.27 * 10^{2}$
Case 2	$-4.317 * 10^{-10}$	$1.17 * 10^{2}$

Figure 321: Resultant Forces, Beam B

Resultant Force - Case 1:

$\operatorname{Cos}(52)=\frac{-F_{x}}{F}$
$\operatorname{Cos}(38)=\frac{F_{y}}{F}$
Resultant Force $(F)=\frac{-F_{x}}{\operatorname{Cos}(52)}+\frac{F_{y}}{\operatorname{Cos}(38)}=\frac{-2.59 * 10^{-10}}{\operatorname{Cos}(52)}+\frac{1.27 * 10^{2}}{\operatorname{Cos}(38)}=161 \mathrm{kN}$

Resultant Force - Case 2:

$\operatorname{Cos}(52)=\frac{-F_{x}}{F}$
$\operatorname{Cos}(38)=\frac{F_{y}}{F}$
Resultant Force $(F)=\frac{-F_{x}}{\operatorname{Cos}(52)}+\frac{F_{y}}{\operatorname{Cos}(38)}=\frac{-4.317 * 10^{-10}}{\operatorname{Cos}(52)}+\frac{1.17 * 10^{2}}{\operatorname{Cos}(38)}=148 \mathrm{kN}$
As seen above case 1 has a critical load on beam B of 161 kN , however as the surface between beam B and the sandstone culvert is assumed to be flush this load must be treated as a uniformly distributed load throughout the entirety of the beams length.
$w^{*}=\frac{161}{\text { Beam Length }}=\frac{161}{1.21}=133 \mathrm{kN} / \mathrm{m}$

Figure 322: Beam B-UDL

3.5.2.4. Design for Flexure

The ultimate flexural strength of a concrete member in flexure will be design in accordance with section 8 of AS 3600.
$M^{*}=\frac{w^{*} l^{2}}{8}=\frac{(133)(1.21)^{2}}{8}=24.3 \mathrm{kNm}$

Figure 323: Beam B Cross Section

- consulting

Ultimate Bending Capacity $\left(\phi M_{u}\right)$
$M_{u}=\frac{M^{*}}{\phi}$

Where $\phi=0.8$ in accordance with Table 2.2.2 of AS 3600 .
$M_{u}=\frac{24.3}{0.8}=30.4 \mathrm{kNm}$

Effective Depth (d)

The diameter of the ligatures will be assumed to be N12 in the effective depth calculation. An assumption that N12 steel reinforcing bars will be used.
$d=D-$ cover - ligature diamater $-\left(\frac{1}{2}\right)$ bar diamater $=230-30-12-\left(\frac{12}{2}\right)=182 \mathrm{~mm}$

Calculate Tensile Steel ($\mathbf{A}_{\mathbf{s t}}$)
Assuming the moment arm between the tension steel and the compression flange of the concrete beam $=0.925 d$:
$M_{u}=T * Z_{u}$
$T=\frac{M u}{Z u}=\left(\frac{30.4 * 10^{6}}{0.925(182)}\right) * 10^{-3}=180.6 \mathrm{kN}$
$T=A_{s t} f_{s y}$
$f_{s y}=$ Class N reinforcement from Table 3.2.1 of AS 3600. Deformed reinforcing bars in accordance with AS/NZS 4671 will be used with a yield strength of 500 MPa .
$A_{s t}=\frac{T}{f_{y}}=\frac{180.6 * 10^{3}}{500}=361 \mathrm{~mm}^{2}$

According to the ARC Reinforcement Handbook: Adopt 2N16, Ast $=400 \mathrm{~mm}^{2}$. As the bar size has changed from N12 to N16 the effective depth will need to be recalculated:
$d=D-$ cover - ligature diamater $-\left(\frac{1}{2}\right)$ bar diamater $=230-30-12\left(\frac{16}{2}\right)=180 \mathrm{~mm}$

Equilibrium:
Assuming all tension forces are equal to compressive forces:
$T=C$
$T=A_{s t} f_{s y}$

$$
A_{s t} f_{s y}=\alpha_{2} f_{c}^{\prime} \gamma K_{u} d b
$$

$C=\alpha_{2} f_{c}^{\prime} \gamma K_{u} d b$
$\rightarrow(400)(500)=(0.85)(40)(0.77)\left(K_{u}\right)(180)(230)$
$\rightarrow K_{u}=0.18$, Ductility Okay

Calculate the ultimate flexure capacity $\left(\phi M_{u}\right)$:
$Z_{u}=d-\left(\frac{1}{2}\right) \gamma K_{u} d=180-\left(\frac{1}{2}\right)(0.77)(0.18)(180)=167.5 \mathrm{~mm}$
$\phi M_{u}=(0.8) T Z_{u}=(0.8)(400)(500)(167.5)=26.8 \mathrm{kNm}$

As $26.8>24.3, \phi M_{u}>M^{*}$, flexural strength okay

Bar Spacing:
The reinforcing bar spacing will need to be wide enough to allow room for the course aggregates within the concrete.
$s=\frac{b-(\text { No. Bars })(\text { Bar Diamater })-(2)(\text { Cover })-(2)(\text { Ligature Diameter })}{(\text { No. Bars })-1}$
$s=\frac{230-(2)(16)-(2)(30)-(2)(12)}{(2)-1}=114 \mathrm{~mm}$, Spacing Okay

Figure 324: Beam B, Flexural Design

3.5.2.5. Design for Shear

The ultimate shear strength of a concrete member will be designed in accordance with section 8.2 of AS 3600.
$V^{*}=\frac{w L}{2}=\frac{(133)(1.21)}{4}=80.5 \mathrm{kN}$

3.5.2.5.1.1. Concrete Shear Capacity:

The shear capacity of a concrete member excluding shear reinforcement will be calculated in accordance with section 8.2.7 of AS 3600:
$V_{u c}=\beta_{1} \beta_{2} \beta_{3} b_{v} d_{o} f_{c v}\left(\frac{A_{s t}}{\left(b_{v}\right)\left(d_{o}\right)}\right)^{\frac{1}{3}}$
$\beta_{1}=1.1\left(1.6-\frac{d_{o}}{1000}\right)$
$d_{o}=d=180$
$\beta_{1}=1.1\left(1.6-\frac{180}{1000}\right)=1.562$
$\beta_{2}=1$, No axial forces present
$\beta_{3}=1$
$b_{v}=b=230 \mathrm{~mm}$
$f_{c v}=f_{c}{ }^{\frac{1}{3}} \leq M P a$
$f_{c v}=(40)^{\frac{1}{3}}=3.4 \mathrm{MPa}$
$V_{u c}=(1.562)(1)(1)(230)(180)(3.4)\left(\frac{400}{(230)(180)}\right)^{\frac{1}{3}}=46.8 \mathrm{kN}$
$0.5 \phi V_{u c}=0.5 * 0.7 * 46.8=16.4 k N$

As $16.4<40.2,0.5 \phi V_{u c}<V^{*}$, shear capacity not okay

Minimum Shear Steel Capacity

A reinforced concrete member containing minimum shear reinforcement will be designed in accordance with section 8.2.9 of AS 3600 .
$V_{u, \min }=V_{u c}+0.1 \sqrt{f_{c}^{\prime}} b_{v} d_{o} \geq V_{u c}+0.6 b_{v} d_{o}$
$V_{u, \min }=(46.8)\left(10^{3}\right)+(0.1)(\sqrt{(40})(230)(180) \geq(46.8)\left(10^{3}\right)+(0.6)(230)(180)$
$V_{u, \min }=73 \geq 71.6$
$V_{u, \min }=73$
$\phi V_{u, \min }=(0.7)(73)=51.1 \mathrm{kN}$

As $51.1<80.5, \phi V_{u, \min }<V^{*}$, concrete with minimum shear steel capacity not okay

As the concrete member containing the minimum shear reinforcement does not have enough shear capacity, shear reinforcement will need to be designed.

Shear Steel Design

The shear reinforcement will be designed in accordance with section 8.2.10 of AS 3600 .
$V^{*}<\phi\left(V_{u c}+V_{u s}\right)$
$\rightarrow V_{u s}=\frac{V^{*}}{\phi}-V_{u c}=\frac{80.5}{0.7}-46.8=68.2 \mathrm{kN}$
$V_{u s}=\frac{A_{s v} f_{s y} d_{o} \cot \theta_{v}}{s}$
$\cot \theta_{v}=1$, conservative approach
$(68.2)\left(10^{3}\right)=\left(A_{s v}\right) \frac{(500)(180)(1)}{s}$
$\frac{A_{s v}}{s}=\frac{(68.2)\left(10^{3}\right)}{(500)(180)(1)}=0.757 \mathrm{~mm}^{2} / \mathrm{mm}$

Try N12 ligatures, $A_{s v}=2 * 110=220 \mathrm{~mm}^{2}$
$\frac{220}{s}=0.757$
$s=290 \mathrm{~mm}$

Max Longitudinal Spacing $s=\min (500$ or $0.75 D)$
$0.75 \mathrm{D}=172.5 \mathrm{~mm}$
$s=172.5 \mathrm{~mm}$
Adopt N 12 ligatures at 170 cts . As the length of the beam is 1210 mm and assuming the ligatures will be spaced evenly and they will have a minimum cover of 30 mm from each end of beam B :

Amount of Ligatures $=\frac{1210-(2)(30)}{172.5}=6.67=8$ ligatures
$s=\frac{1210-(2)(30)}{8-1}=164.3 \approx 165 \mathrm{~mm}$
Adopt 8N12 ligatures at 165 cts.

3.5.2.6. Dowel Bars

Shear Force for Case 1:
$N_{R c}=\frac{161}{1.21} * \frac{1.21}{2}=80.5 \mathrm{kN}$
$N_{s}=140 k N$, Figure 138: AFD, Case 1
$V^{*}=140-80.5=59.5 \mathrm{kN}$
Shear Force for Case 2:
$N_{R c}=\frac{148}{1.21} * \frac{1.21}{2}=74 \mathrm{kN}$
$N_{s}=134 k N$, Figure 141: AFD, Case 2
$V^{*}=134-74=60 k N$
Hence load case 2 is critical with a shearing resistance of 60 kN between the reinforced section and the sandstone culvert.

The dowel bars are to be designed in accordance with AS 4100 - 1998 section 5.11:
$V^{*}<\phi V_{v}$ where $V_{v}=V_{u}$ If the shear distribution is approximately uniform. Assuming a uniform stress distribution throughout the dowel bars:
$V_{u}=V_{w} \quad$ if $\quad \frac{d_{p}}{t_{w}}<\frac{82}{\sqrt{\frac{f_{y}}{250}}}$

Assuming N12 reinforcing bars are to be used:
$\frac{12}{12}<\frac{82}{\sqrt{\frac{500}{250}}}=1<58$

Hence $V_{u}=V_{w}$ where V_{w} will be the nominal shear yield capacity of the section which is undergoing shear and will be designed in accordance with section 5.11.4 of AS 4100 -1998:
$V_{w}=0.6 f_{y} A_{w}$
$A_{w}=1 N 12=110 \mathrm{~mm}^{2}$
$V_{w}=(0.6)(500)(110)=33 k N$

Try 3N12 bars, $V_{w}=(3)(33)=99 k N$
$\phi=0.9$, in accordance with table 3.4 of AS $4100-1998$
$\phi V_{w}=(0.9)(99)=89.1 \mathrm{kN}$
$A 89.1>60, \phi V_{w}>V^{*}$ Shear Capacity Okay

As the sandstone arch culverts structural integrity and longevity is a high priority to Hydro Future, the dowel bars will be designed conservatively to ensure a clean connection between the RC concrete and the sandstone:

Adopt 5N12 dowel bars at 175 cts for column A and C

Adopt 6N12 dowel bars at 175 cts for beam B

The dowel bars will connect into a hole in the sandstone arch which compromises of a 30 mm diameter at a depth of 50 mm with an additional 50 mm hole at a diameter of 12 mm to ensure the dowel bar is kept central within the 100 mm deep hole. The dowel bars will be adhesively connected to the sandstone using epoxy grout designed in accordance with section 17.1.8 of AS 3600.

3.5.2.7. Design Summary

Hydro-Future has ensured the reinforced concrete section which has been designed as 2 columns and a beam is able to withstand the live and dead loads which result in flexure, shear and axial stresses. The design summary for each member can be seen below in Table 122.

Table 122: Member Reinforcement Design Summary

Design	Column A			Column C			Beam B		
Action	$\boldsymbol{A}_{\text {st }}$	$A_{\text {sc }}$	$A_{s v}$	$\boldsymbol{A}_{\text {st }}$	$\boldsymbol{A}_{\text {sc }}$	$A_{s v}$	$\boldsymbol{A}_{\text {st }}$	$\boldsymbol{A}_{\text {sc }}$	$A_{s v}$
Flexural and Axial	2N16	2N16	0	2N16	2N16	0	0	0	0
Flexural	2N16	2N16	0	2N16	2N16	0	2N16	0	0
Shear	0	0	7N12 @165	0	0	$\begin{aligned} & \text { 7N12 } \\ & \text { @165 } \end{aligned}$	0	0	$\begin{aligned} & \text { 8N12 } \\ & \text { @165 } \end{aligned}$

The connection between the reinforced concrete section and sandstone culvert was designed to resist shear loading and to ensure compatibility between the 2 structures. The connection design summary can be seen below in Table 123.

Table 123: Connection Reinforcement Design Summary

Design	Column A	Column C	Beam B
Action			
Shear	$5 N 12 @ 175$	$5 N 12 @ 175$	$6 N 12 @ 175$

3.5.2.8. Reinforcement Detailing

To ensure all the designed steel reinforcement is practical and constructible whilst still maintaining the design requirements including spacing, cover and length a reinforcement detailing plan has been devised by Hydro-Future to maintain the structures strength and allow for installation of the reinforcement.

3.5.2.9. Column A \& C

Column A and C span 600 mm vertically including a 407 mm span into the arch and beam B however the critical span which will undergo shear and bending can be seen below in Figure 325. The connection between the beam and column will not be of a critical concern due to the structural stability of two members meeting and the change in bending and shear which occur at the connection point.

Figure 325: Critical Spans

Bar Bending

As beam B is on an angle due to its location throughout the arch the reinforcement will be required to be bent to ensure the reinforcement flows throughout column A and C . The reinforcing bars will be bent in accordance with section 17.2.3.(a) of AS 3600, which states that the reinforcement will be bent cold around a pin of diameter specified in accordance with clause 17.2.3.2 to ensure no mechanical weakening of the bar is induced. In accordance with clause 17.2.3.2(c) the pin used to bend a reinforcing bar of diameter less than or equal to 16 mm will be:
$4 d_{b}=(4)(16)=64 \mathrm{~mm}$

The dimensions of the reinforcing bend will be specified in the reinforcement design drawings as stated in clause 17.2.3.2(c).

Reinforcement Lapping

The longitudinal reinforcement located in columns A and C will be extended into the sandstone base 100 mm as specified for the dowel bars to ensure a sufficient connection at the bottom and top of the column. The extension of longitudinal reinforcing bars into the sandstone will also ensure the steel is held in place during concrete placement. However as the longitudinal reinforcing bars throughout the column will extend into the sandstone arch the reinforcement will need to be installed in 2 sections and lapped at the columns centre, as the critical flexure design caused bending about the X axis the reinforcement will be lapped in the X direction to ensure the flexural capacity of the column is not affected. The lap development length of the reinforcement bars will be designed in accordance with section 13.1.5 of AS 3600 with the assumption that the longitudinal reinforcing bars with primarily be in compression.

Basic Development Length:
$L_{s y . c b}=\frac{(0.22)\left(f_{s y}\right)}{\sqrt{f_{c}^{\prime}}} d_{b}>0.0435 f_{s y} d_{b}$ or 200 mm
$L_{s y . c b}=\frac{(0.22)(500)}{\sqrt{40}}(16)>(0.0435)(500)(16)$ or 200 mm
$L_{s y . c b}=\frac{(0.22)(500)}{\sqrt{40}}(16)>(0.0435)(500)(16)$ or 200 mm
$L_{s y . c b}=280>348$ or 200
$L_{\text {sy.cb }}=348 \mathrm{~mm}$

Refined Development Length:
$L_{s y . c}=k_{6} L_{s y . c b}$
If $\frac{\Sigma A_{t r}}{s}>\frac{A_{s}}{600}$ then $k_{6}=0.75$ otherwise $k_{6}=1.0$
$\Sigma A_{t r}=$ Shear Reinforcment Along $L_{s y . c b}=2 N 12=220 \mathrm{~mm}^{2}$
$s=$ Shear Reinforcment Spacing $=160 \mathrm{~mm}$
$A_{s}=$ Steel Reinforcement $=4 N 16=800 \mathrm{~mm}^{2}$

As $\rightarrow \frac{220}{160}>\frac{800}{600}=1.375>1.33$ hence $k_{6}=0.75$
$L_{s y . c}=(0.75)(348)=261 \mathrm{~mm}$

Hence the lapping length of reinforcement will be taken at 300 mm in the x direction.

3.5.2.10. Beam B

As beam B intersects columns A and C the longitudinal reinforcement in will need to be detailed to ensure it does not conflict at the intersection of beam B and column A and C. As the critical bending direction was assumed to be around the Z axis which is perpendicular to the specified x and y axis in Figure 325, the reinforcement cover will be moved along the Z axis to ensure it does not intersect the column reinforcement nor hinder the bending capacity of beam B.

New Cover $=$ column cover + ligature diamater + bar diameter

New Cover $=30+12+16=58 \mathrm{~mm}$

Recalculate Spacing $S=230-(2)(58)-(2)(16)=82 \mathrm{~mm}$

New longitudinal reinforcement spacing along beam B is sufficient. As the spacing has not changed in the Y direction along beam B the flexural and shear capacity will not be affected.

As shown in Figure 325, beam B has a critical span in which bending and shear will occur over 750 mm . The longitudinal bars through beam B will extend into the sandstone arch as specified for the longitudinal reinforcement of the columns to ensure an adequate connection. Additional top reinforcement which was not required during the design for flexure and shear will be added and extended through beam B and into the sandstone arch for strength and serviceability requirements.

The top and bottom longitudinal reinforcement will extend into the sandstone culvert 100 mm which includes a 50 mm deep hole at a diameter of 30 mm which will be grouted and a 50 mm chamfer hole at a diameter of 16 mm to ensure the reinforcement is held in place and kept central to allow an even distribution of grout around the steel.

As the longitudinal reinforcement will extend into the sandstone arch, they will be required to be installed in 2 sections with an overlap as specified for the columns. The lap development length of the reinforcement bars will be designed in accordance with section 13.1.2 of AS 3600 with the assumption that the longitudinal reinforcing bars with primarily be in tension.

Basic Development Length:
$L_{s y . t b}=\frac{0.5 k_{1} k_{3} f_{s y} d_{b}}{k_{2} \sqrt{f_{c}^{\prime}}}>29 k_{1} d_{b}$
$k_{1}=1.0$
$k_{2}=\frac{132-d_{b}}{100}=\frac{132-16}{100}=1.16$
$k_{3}=1-\frac{0.15\left(c_{d}-d_{b}\right)}{d_{b}}$ where $0.7<k_{3}<1.0$
$c_{d}=\min \left(c_{1}, c, \frac{a}{a}\right)$, figure 13.1.2.3(A) of AS 3600
$c_{d}=\min (42,42,57)=42$
$k_{3}=1-\frac{(0.15)(41-16)}{16}=0.75625$
$L_{\text {sy.tb }}=\frac{(0.5)(1.0)(0.75625)(500)(16)}{(1.16)(\sqrt{40})}>(29)(1.0)(16)$
$L_{s y . t b}=412>464$
$L_{\text {sy.tb }}=464 \mathrm{~mm}$
Refined Development Length:
$L_{s y . t}=k_{4} k_{5} L_{s y . t b}$
$k_{4}=1-K \lambda$
$K=0.1$, Figure 13.1.2.3(B) of AS 3600
$\lambda=\frac{\Sigma A_{t r}-\Sigma A_{t r . \text { min }}}{A_{s}}$
$\Sigma A_{t r}=$ Shear Reinforcment Along $L_{s y . c t} \approx 3 N 12=330 \mathrm{~mm}^{2}$
$\Sigma A_{\text {tr. } \text { min }}=0.25 A_{s}$
$A_{s}=4 N 16=800 \mathrm{~mm}^{2}$
$\Sigma A_{\text {tr. } \text { min }}=(0.25)(800)=200 \mathrm{~mm}^{2}$
$\lambda=\frac{330-200}{800}=0.1625$
$k_{4}=1-(0.1)(0.1625)=0.98375$
$k_{5}=1.0-0.04 \rho_{p}$
$\rho_{p}=\frac{133}{464}=0.29 \mathrm{MPa}$
$k_{5}=1.0-(0.04)(0.29)=0.9884$
$L_{s y . t}=(0.98375)(0.9884)(464)=450 \mathrm{~mm}$
Hence the longitudinal reinforcement throughout beam B will be lapped 450 mm .

3.6. Calculations for the Structural Support System

Client	Tonkin Consulting	Date: $1 / 06 / 2015$
Project	North Terrace Drainage System	Pages: 513-575
Subject	Support System Analysis	By: Michael Renko
Reviewed By:	David Argent	Date: $1 / 06 / 2015$
Approved By:	Eriny Abdelraouf	Date: $7 / 06 / 2015$

3.6.1. Initial Design Dimensions

The preliminary design drawings of the dimensions for the timber support system is illustrated in Figure 326 and Figure 327, these designs drawings are created in reference to the preliminary designs given in the detailed design brief i.e. the arrow, and steel/ timber beam \& purlin support system.

All calculations are completed in reference to these drawings, however these dimensions change depending on the calculated capacity of the chosen members.

Figure 326 Preliminary design drawing; front view, timber support frame

> SIDE VIEW - TIMBER SUPPDRT FRAME

Figure 327 Preliminary design drawing; front view, timber support frame

3.6.2. Detailed Design

3.6.2.1. Analysis Methods

A statically determinate analysis method is utilised for the calculation of ultimate shear forces, bending moments, axial compression and tension forces of the support system.

The arch section of the frame could be simplified to a 3-point, statically determinate arch, however this method is inaccurate due to the complexity of the frame connections to the arching timber sections and is not considered.

A simple structural pinned and roller frame is used for this analysis, it is assumed that the structure is supporting reconfigured load width UDL point loads exerted from the purlins onto the upper most; curved members of the supporting frame. These forces are distributed throughout the structure and can be analysed quickly using finite element software such as Space Gass or Strand7 (Xing-Ma 2015). A sketch of the frame that is utilised for the finite element analysis is presented in Figure 328

Figure 328 Sketch of input for frame into finite element program (Hydro-Future)

The finite element program used for this project is Space Gass, the input and output from this program is presented in the following sections.

3.6.2.2. \quad Space Gass Input

The simple structural frame detailed in Figure 329 is replicated in Space Gass based off the structural frame dimensions presented in Figure 330 this Space Gass design input is shown in Figure 331 and .

Figure 329 Space Gass input of support frame 1

The support system shown represents a section which is dedicated for construction personnel to use when inserting the pipe into the arch culvert.

Figure 330 Space Gass input of support frame 2

The loading transferred from the culvert is distributed to the top section of the frame as a UDL.

Figure (5) shows the inputs used to activate the self-weight of the slab in Space Gass.

Figure 331 Activating gravity, for self-weight of support structure (Space Gass 12; Hydro-Future)

The strength combinations used for the design are shown below. All combinations are given under AS/NZS 1170.0:2002, CL4.2.2 under pg 16. These strength combinations are used to design the timber members.

$$
\begin{gathered}
P u 1=1.35 G\left(\text { Permanent Load i.e. } k_{1}=0.57\right) \\
P u 2=1.2 G+1.5 \psi_{l} Q\left(\text { Long }- \text { term Combination i.e. } k_{1}=0.8\right) \\
P u 3=1.2 G+1.5 Q\left(\text { Short }- \text { Term combination i.e. } k_{1}=0.94\right)
\end{gathered}
$$

Out of the three load combinations presented above, $\mathrm{P}_{\mathrm{u}(3)}$ is the only combination which is applicable to the short term design of the temporary structure. The final loading acting on the culvert are created in space gass by setting up several load cases and then combining them into one ultimate load. The common set-up for these combination load cases are presented below.

$$
\text { Load Case \#1 = Self }- \text { weight }+ \text { Soil Weight }
$$

> Load Case \#2 = Live Load,Traffic
Load Case \#10 = Load Case \#1 + Load Case \#2

The load case inputs used in Space Gass are presented in the tables shown below. These input values are derived from the sandstone arch culvert loading calculations presented in section 6.6.2. All loadings are calculated with respect to a 1 m load width and are therefore converted from kPa to kN / m. The soil loadings are calculated with respect to the given soil property data available in Appendix 3.4.1.2.

Table 124 - (Dead Load) Soil, vertical and horizontal loads

Table 125 - (Live Load) M1600 Traffic Case 1, vertical and horizontal loads

Location	Soil Pressure	Load-UDL (kN/m)	
	Coefficient ($\left.\mathrm{k}_{\mathrm{a}}\right)$	Vertical	Horizontal
A	0.42	29	12
B	0.42	21	9
C	0.42	12	5
D	0.39	7	3
E	0.39	4	2
BASE	0.39	4	2

For this analysis, it is conservatively assumed that the sandstone material has a unit weight of $24 \mathrm{kN} / \mathrm{m}^{3}$. The self-weight of the culvert structure per metre of load width is calculated below. The thickness of the culvert wall is 230 mm

$$
\text { Culvert Self }- \text { Weight }(k P a)=0.24 k N / m 3 x 0.23 m
$$

- consulting

$$
\begin{aligned}
& \text { Culvert Self }- \text { Weight }(k P a)=0.0552 \\
& \text { And per metre width }(\text { load width }=1 m) \\
& \text { Culvert Self }- \text { Weight }(k P a) \approx \mathbf{0 . 0 6} \mathbf{k N} / \boldsymbol{m}
\end{aligned}
$$

Table 126 Space Gass input load cases

Load Case	Load - UDL (kN/m) Fx	
$\mathbf{1}$ (Support Sys. Self-Weight) G	Self-Generated	
$\mathbf{2}$ (Soil Loading) G	Use Appendix 3.4.1.2	
$\mathbf{3}$ (Live Load, Traffic) LL	Use Appendix 3.4.1.3 input	
$\mathbf{4}$ (Culvert Self-Weight) G	-	0.06
$\mathbf{1 0}$ (Combined Loading)	$1.2 G+1.5 Q$	

Figure 332 Space Gass load combination 2; Soil Loading (Xing-Ma)

Figure 333 Space Gass load combination 3; Traffic (LL)

Figure 334 Space Gass load combination 4; Culvert Self-weight (Xing-Ma)

Figure 335 Space Gass load combination 10; Combined loading (1.2G + 1.5Q)

The analysis of structural members in this Space Gass project is completed by trial and error; for the first trial, the input dimensions i.e. width and breadth of each timber member is presented in Table 127

Table 127 Section properties of support system (Space Gass 12; Hydro-Future)

Section	Dimensions (mm)	Area (mm ${ }^{\text {2 }}$)	Ixx (mm^{4})	lyy (mm ${ }^{4}$)
1 (Grey)	225×100	22500	1.875×10^{7}	9.492×10^{7}
2 (Blue)	200×100	20000	1.667×10^{7}	6.667×10^{7}

- consulting

Figure 336 Space Gass rendered frame support system

The results from the linear static analysis presented in the following sections show the behaviour exhibited by the loaded frame structure. A conclusion is drawn based on the generated shear forces, bending moments and deflections.

3.6.2.3. Analysis Results

The results from the Space Gass linear static analysis has given the output for shear forces, bending moments, and axial forces of the timber structure. These results are available in the tables below illustrate the critical loading outputs for frame 1 and 2

Table 128 Output loadings for Frame 1 with a 1 m load width

Section	Member	Nodes	Moment	Shear Force	Axial Force
Side Timber	1	1		(kNm)	(kN)

Table 129 Output loadings for Frame 2 support 1m load width

Section	Member	Nodes	Moment	Shear Force	Axial Force
Side Timber	3	4	5.2	0.0	(kN)
Support		3	0.0	23.4	85.8
Internal	6	21	0.0	0.2	86.0
Timber		5	0.0	0.0	97.0
Timber Arch	19	17	0.6	3.3	97.3
Timber Arch	9	4	-5.2	23.4	65.9

The Space Gass results shows that the second frame system, sustains the highest and most critical loading, these loadings are used for design calculations of the timber frame system.

The critical loadings were calculated using an applied load width of 1 m , since the pipe being connected to the arch culvert is approximately 900 mm wide, a larger load width should be used to provide more space for construction personnel. The recalculated loadings using a load width of 2 m is shown below.

Table 130 Critical forces in Frame 2 supporting $2 m$ load width

Section	Member	Nodes	Moment	Shear Force	Axial Force
Side Timber	3	4	-10.3	(kNm)	0.0
Support		3	0.0	-33.1	171.6
Internal	6	21	-0.4	0.0	172.1
Timber		5	0.0	0.0	194.0
Timber Arch	19	17	1.2	-6.5	194.5
Timber Arch	9	4	-10.4	-46.8	131.8
		2		13.5	168.4

The doubling the load width from 1 m to 2 m has approximately doubled the loadings on the arch culvert system. For simplicity, the member capacities will be check w.r.t. a load width of 1 m ; a final summary of results and costing for each member will indicate which load width should be chosen for the final design of the support system.

3.6.3. Support System Design

The calculations completed in this section are in accordance to AS1720.1. The clauses utilised from this standard are:
> Clause 3.3.1 - Compression strength design

- Clause 3.3.2 - Slenderness coefficient for lateral buckling under compression
> Clause 3.2.1 - Bending strength design
> Clause 3.2.5 - Flexural shear strength design
>Clause 3.2.6 - Bearing capacity check

3.6.3.1. Derived Factors from AS1720.1 i.e. k, \emptyset etc

The factors required for calculation of shear, moment and axial compression capacity are determined below.

Stress Grade Factor - \emptyset
The value of \emptyset is derived from Table 2.1 of AS 1720.1-2010, from row 'Stress grades: higher FGrades.' The structure must fulfil essential services and therefore critical category 3 is chosen.

$$
\emptyset=0.75
$$

Duration of load factor, k_{1}

Since the structure is temporary and will be dismantled after connection of the stormwater pope has been made to the arch culvert, it is assumed that the following value for k_{1} should be chosen (as per 2.4.1.1(g) of AS 1720.1-2010):

$$
k_{1}(5 \text { days, short term })=0.94
$$

Partial Seasoning Factor, k4

The factor of k_{4} represents the strength due to seasoning. As the design member is unseasoned, and it is unknown whether the full design load with be applied after the member has become partially seasoned, the following value is used (as per 2.4.2.2. of AS 1720.1-2010):

$$
k_{4}=1.0
$$

Temperature Factor, k_{6}

This modifier allows for the effects of high temperature on exposed, seasoned, timber. As the member will most likely not season over time, the following k value is used (as per 2.4.3 of AS 1720.1-2010):

$$
k_{6}=1.0
$$

Strength Sharing Factor, k9

The k9 factor represents the sharing of load between parallel members, the member is considered to have insufficient sharing since the distribution and sharing of loads in this case is not possible; the spans from edge to edge have no internal member restraints in the lateral direction, and as such the value of k 9 is taken as 1.0 for all members.

$$
k_{9}=1.0
$$

Bending, Stability/Slenderness Factor, k_{12}

The calculation of k_{12} requires the formula of S_{1}, this is given by equation 3.2(5) of AS 1720.12010. The results from this formula will vary for each timber member being analysed. A sample calculation of S_{1} for 'Side Timber Support Member' is shown below:

$$
S_{1}=1.25 \frac{d}{b}\left(\frac{L_{a y}}{d}\right)^{0.5}
$$

The values used for this member are: $d=222 \mathrm{~mm}$, and $b=97 \mathrm{~mm}$. $\mathrm{L}_{\text {ay }}=600 \mathrm{~mm}$:

$$
\begin{gathered}
S_{1}=1.25 \frac{222 \mathrm{~mm}}{97 m m}\left(\frac{600 \mathrm{~mm}}{222 \mathrm{~mm}}\right)^{0.5} \\
=4.70
\end{gathered}
$$

The value of ρ_{b} for F34 unseasoned hardwood, the critical value, is 1.21, therefore:

$$
\begin{aligned}
\rho_{b} S= & 4.70 \times 1.21 \\
& =5.69
\end{aligned}
$$

Therefore, as per 3.2.4(a) of AS 1720.1-2010 as 4.74<10, k_{12} is taken as 1.0. The 'Timber Arch' member will be restraint along the compression face, it is assumed the purlins are to be space at 200 cts, therefore Lay is set to 200 mm for Timber Arch. Take note, dimensions of unseasoned timber members are reduced by 3 mm .

Table $131 k_{12}$ Bending Stability Factor Calculation

K_{12} results for all timber members in bending						
Member:	Dimensions $(\mathrm{d} \times \mathrm{b})$	L_{ay}	$\mathrm{S}_{1}:$	$\rho_{b} S:$	k_{12}	
Side Timber Support	$225 \mathrm{~mm} \times 100 \mathrm{~mm}$	600 mm	4.70	5.69	1.0	
Internal Support	$200 \mathrm{~mm} \times 100 \mathrm{~mm}$	$1,600 \mathrm{~mm}$	7.23	8.75	1.0	
Timber Arch	$125 \mathrm{~mm} \times 100 \mathrm{~mm}$	200 mm	2.01	2.44	1.0	

Compression, Stability/Slenderness Factor, k_{12}

The calculation of k_{12} requires the formula of S_{3} and S_{4}, this is given by equations 3.3(5) to 3.3(9) in AS 1720.1-2010. A sample calculation of S_{3} and S_{4} for 'Side Timber Support Member' are shown below:

$$
L_{a x}=L_{a y}=600 \mathrm{~mm} \text {, i.e. no restraints along the length of the column }
$$

The values used for this member are: $d=222 \mathrm{~mm}$, $a n d b=97 \mathrm{~mm}$. $L_{\text {ay }}=600 \mathrm{~mm}$:

Solving for S_{3} :

$$
\begin{gathered}
\mathrm{S}_{3}=\mathrm{L}_{\mathrm{ax}} / \mathrm{d} \\
\mathrm{~S}_{3}=\frac{600 \mathrm{~mm}}{222 \mathrm{~mm}} \\
\mathrm{~S}_{3}=2.70
\end{gathered}
$$

Or

$$
\mathrm{S}_{3}=\mathrm{g}_{13} \mathrm{~L} / \mathrm{d}
$$

Set g_{13} to 1.5; Restrained in one end in direction and position and other end partially restrained, as per Table 3.2; AS1720.1-2010

$$
\begin{gathered}
\mathrm{S}_{3}=1.5\left(\frac{600 \mathrm{~mm}}{222 \mathrm{~mm}}\right) \\
\mathrm{S}_{3}=4.05
\end{gathered}
$$

- consulting

Take the lesser value of S_{3} as the final answer, i.e. 2.07

$$
\begin{aligned}
& \text { Solving for } \mathrm{S}_{4} \text { : } \\
& S 4=\text { Lay } / b \\
& S 4=\frac{600 \mathrm{~mm}}{97 \mathrm{~mm}} \\
& S 4=6.19 \\
& O r \\
& S 4=g 13 \mathrm{~L} / b \\
& S 4=1.5 \times 6.19 \\
& S 4=9.28
\end{aligned}
$$

Take the lesser value of S_{4} as the final answer, i.e. 6.19

Of the two calculated values; S_{3} and $S_{4}, S_{4}=6.19$ (larger value) is the critical slenderness factor used to calculate $\rho_{c} S$

Factor k_{12} requires ρ_{c} from Table 3.3 of AS 1720.1-2010. For unseasoned timber this value is equal to 1.34 and therefore $\rho_{c} S$ equal to 8.29. Since $\rho_{c} S<10$, the factor is equal to:

$$
k_{12}=1.0
$$

Table 132 - k_{12} Compression Stability Factor Calculation

	K_{12} results for all timber members					
Member:	Dimensions (dxb)	Lay	Lower S_{3} :	Lower S_{4} :	$\rho_{c} S:$	k_{12}
Side Timber Support	$\begin{gathered} 225 \mathrm{~mm} x \\ 100 \mathrm{~mm} \end{gathered}$	600mm	2.70	6.19	8.29	1.0
Internal Support	$\begin{gathered} 200 \mathrm{~mm} \mathrm{x} \\ 100 \mathrm{~mm} \end{gathered}$	1,600mm	5.69	11.55	7.62	1.0
Timber Arch	$\begin{gathered} 125 \mathrm{~mm} x \\ 100 \mathrm{~mm} \end{gathered}$	200mm	1.15	1.44	1.54	1.0

consulting

The values of stability factor, k_{12} vary depending on the chosen member size. It should be noted that if any size were to reduce, the slenderness values would be recalculated to check if the stability factor changes i.e. $\rho_{c} S$ or $\rho_{b} S>10$.

3.6.3.2. Side timber support design

The Space Gass output loadings for the side timber support member is presented in Table 133

Table 133 Space Gass output loadings; Side timber support member

Section	Member	Nodes	Moment $(k N m)$	Shear Force	Axial Force
Side Timber	3	4	5.2	0.0	$(k N)$
Support		3	0.0	16.6	88.3

Table 134 Side Timber Support Member Properties

Side Timber Support Member Properties	
Length	$\approx 0.6 \mathrm{~m} \mid 600 \mathrm{~mm}$
Area	$225 \mathrm{~mm} \times 100 \mathrm{~mm}$
Bending Strength	84 MPa
Shear Strength	6.1 MPa
Tension, parallel to	Hardwood; 51 MPa
grain	
Compression	63 MPa
Elastic Modulus	21.5 GPa
Rigidity Modulus	1.43 GPa

Compression Capacity Check

Compression members must be checked for stability also i.e. the slenderness; modifier k_{12}. The compressive capacity formula given in AS 1720.1-2010 is shown below.

$$
\emptyset N d . c .=\emptyset k_{1} k_{4} k_{6} k_{12} f^{\prime} c A^{\prime} c
$$

The cross sectional area of the member for compression, A_{c}, is equal to $222 \mathrm{~mm} \times 97 \mathrm{~mm}$ (Reduced by 3 mm due to unseasoned timber), equals $21,534 \mathrm{~mm}^{2} ; f_{c}^{\prime}$ is given by Table H 2.1 of the AS 1720.1-2010 as 63MPa (for F34 grade hardwood).

The capacity is calculated below.

FUTURE

- consulting

$$
\begin{gathered}
\emptyset N d . c .=0.75 \times 0.94 \times 1.0 \times 1.0 \times 1.0 \times 64 \mathrm{MPa} \times 21,534 \mathrm{~mm}^{2} \\
\emptyset N d, c=971.6 \mathrm{kN}>103.6 \mathrm{kN}
\end{gathered}
$$

The capacity in compression for this member is almost 8 times larger than the ultimate loading. This member is overdesigned and must be reduced in size.

The size of the member is reduced to $125 \times 100 \mathrm{~mm}$; this size is effectively the same as the 'Timber Arch Member'. Take note, stability factor for bending and compression are equal to 1.0 for this size.

$$
\begin{gathered}
\emptyset N d . c .=0.75 \times 0.94 \times 1.0 \times 1.0 \times 1.0 \times 64 \mathrm{MPa} \times(122 \times 97) \mathrm{mm}^{2} \\
\emptyset N d . c .=534.0 \mathrm{kN}>103.6 \mathrm{kN}
\end{gathered}
$$

The capacity in compression for this member is almost 4 times larger than the ultimate loading. This member is overdesigned and must be reduced in size. The reduction in size will undoubtedly decrease stability performance (k_{12}) in bending and compression. The stability factors are calculated in Excel with regard to a range of timber cross-sectional sizes in the tables below with the best member cross-section size chosen for the design.

Table 135 Bending Stability (k_{12}) calculation for different sized members

Member	d (mm) Actual	$b(m m)$ Actual	$d(\mathrm{~mm})$ Reduced(3mm)	$b(\mathrm{~mm})$ Reduced(3mm)	S_{1}	$\rho_{b} S$	k_{12}
Side Timber Support	225	100	222	97	4.70	5.69	1.0
	100	50	97	47	6.42	7.76	1.0
	75	50	72	47	5.53	6.69	1.0
Internal Support	200	100	197	97	7.23	8.75	1.0
	100	50	97	47	10.48	12.68	Not 1.0
	75	50	72	47	9.03	10.92	Not 1.0
Timber Arch	125	100	122	97	2.01	2.44	1.0
	100	50	97	47	3.70	4.48	1.0
	75	50	72	47	3.19	3.86	1.0

Table 136 Compression Stability (k_{12}) calculation for different sized members (AS1720.1, Excel 2015; Hydro-Future)

Member	(mm) ctual	$b(\mathrm{~mm})$ Actual	G_{13}	S_{3}	$\mathrm{G}_{13} S_{3}$	S_{4}	$\mathrm{G}_{13} \mathrm{~S}_{4}$	$\rho_{c} S$	Lay	Lax	k_{12}
Side Timber Support	225	100	1.5	2.70	4.05	6.19	9.28	8.29	600	600	1.0
	100	50	1.5	6.19	9.28	12.77	19.15	17.11			Not 1.0
	75	50	1.5	8.33	12.50	12.77	19.15	17.11			Not 1.0
Internal Support	200	100	0.7	8.12	5.69	16.49	11.55	15.47	1600	1600	Not 1.0
	100	50	0.7	16.49	11.55	34.04	23.83	31.93			Not 1.0
	75	50	0.7	22.22	15.56	34.04	23.83	31.93			Not 1.0
Timber Arch	125	100	0.7	3.69	1.15	2.06	1.44	1.93	200	450	1.0
	100	50	0.7	4.64	1.44	4.26	2.98	3.99			1.0
	75	50	0.7	6.25	1.94	4.26	2.98	3.99			1.0

From analysis of bending and compression slenderness/stability it is concluded that the most appropriate members to be tested for further detailed design are as follows:

- $75 x 50 \mathrm{~mm}$ for Side Timber Member
- $75 \times 50 \mathrm{~mm}$ for Internal Member
- $75 \times 50 \mathrm{~mm}$ for Timber Arch Member

Reducing the members to a single size improves the speed of calculations i.e. replicating results from one section to another.

The compression capacity for the side timber support is calculated below.

$$
\begin{gathered}
\emptyset N d . c .=0.75 \times 0.94 \times 1.0 \times 1.0 \times 1.0 \times 64 \mathrm{MPa} \times(73 \times 47 \mathrm{~mm}) \\
\emptyset N d, c=154.8 \mathrm{kN}>103.6 \mathrm{kN} ; O K
\end{gathered}
$$

The capacity in compression for this member is satisfactory, adopt $75 \times 50 \mathrm{~mm}$. This member is fairly strong in resisting the applied forces, however the uncertainty surrounding its deflection, moment and shear capacity dictates the necessity to not reduce the size any further.

Shear Capacity Check

The beam design shear capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 33:

$$
V d=\emptyset k_{1} k_{4} k_{6} f^{\prime} s A^{\prime} s
$$

The design is safe if the capacity equation satisfies the following expression below

$$
V^{*} \leq V_{d}
$$

The ultimate shear force is located $1.5 d$ from either of member supports. The shear force for this member is equal to -16.5 kN at Node 2 , and the length is 600 mm . The depth of the member is 75 mm , therefore $1.5 \mathrm{~d}=112.5$, the shear force at this point is calculated below via equal triangles.

Figure 337: Equal triangle for shear calculation

$$
\begin{gathered}
\mathrm{V}^{*} \text { at } 1.5 \mathrm{~d} \text { from support }=\mathrm{V}^{*} \mathrm{x} \frac{600 \mathrm{~mm}-112.5 \mathrm{~mm}}{600 \mathrm{~mm}} \\
\mathrm{~V}^{*} \text { at } 1.5 \mathrm{~d} \text { from support }=16.6 \mathrm{kN}\left(\frac{600 \mathrm{~mm}-112.5 \mathrm{~mm}}{600 \mathrm{~mm}}\right) \\
\mathrm{V}^{*} \text { at } 1.5 \mathrm{~d} \text { from support }=13.5 \mathrm{kN}
\end{gathered}
$$

The K factors given in the equation modify the design strength capacity based on the same factors used to calculate compression capacity. For F34 timber, the value of f_{s}^{\prime} is equal to 6.1 MPa. The equation used to calculate shear area is shown below.

$$
\mathrm{A}_{\mathrm{s}}=\left(\frac{2}{3}\right) b d
$$

Recall that the dimensions b and d have shrunk by 3 mm since the member is unseasoned.

$$
\mathrm{A}_{\mathrm{s}}=\left(\frac{2}{3}\right)(72 \mathrm{~mm} \times 47 \mathrm{~mm})
$$

$$
A_{s}=2,256 \mathrm{~mm}^{2}
$$

Substituting all values into shear capacity equation and solving for V_{d}

$$
\begin{gathered}
V_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 6.1 \mathrm{MPa} \times 2,256 \mathrm{~mm}^{2} \\
V_{d}=10,828.9 \mathrm{~N} \\
\text { Therefore, } \\
V^{*}>V_{d}
\end{gathered}
$$

The design capacity for shear doesn't withstands the ultimate shear load. The size for this member must be increased to $100 \times 100 \mathrm{~mm}$.

$$
\begin{gathered}
A s=\left(\frac{2}{3}\right)(97 \mathrm{~mm} \times 97 \mathrm{~mm}) \\
A s=6,272.7 \mathrm{~mm}^{2} \\
V_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 6.1 \mathrm{MPa} \times 6,272.7 \mathrm{~mm}^{2} \\
V_{d}=28.7 \mathrm{kN} \\
V_{d}<\mathrm{V}^{*}, \mathrm{~V}^{*}=28.4 \mathrm{kN} ; \mathrm{OK}
\end{gathered}
$$

Design capacity met, adopt $100 \times 100 \mathrm{~mm}$ from this point forth

Flexural Bending Capacity Check

The beam design bending strength capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 27:

$$
\begin{gathered}
M d=\emptyset k_{1} k_{4} k_{6} k_{12} f^{\prime} b Z \\
\text { Where } f^{\prime} b=84 \mathrm{MPa}
\end{gathered}
$$

The design is safe if the capacity equation satisfies the following expression below

$$
M^{*} \leq M_{d}
$$

Calculating the section modulus, Z for the member using the following equation listed below

$$
\begin{gathered}
Z=\frac{b d^{2}}{6} \\
Z=\frac{\left(97 \mathrm{~mm} x(97 \mathrm{~mm})^{2}\right)}{6} \\
Z=152,112.2 \mathrm{~mm}^{3}
\end{gathered}
$$ The value of k_{12} is equal to 1.0

Substituting all values into design capacity equation and solving for M_{d}

$$
\begin{gathered}
M_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 84 \mathrm{MPa} \times 152,112.2 \mathrm{~mm}^{3} \\
M_{d}=9.58 \mathrm{kNm} \\
\text { Therefore, } M_{d}>M^{*} \text {, where } M^{*}=5.2 \mathrm{kNm}
\end{gathered}
$$

Adopt $100 \times 100 \mathrm{~mm}$ for the 'Side Timber Support' member.

Deflection Serviceability Check

Deflection can cumulate to cause creep over time. The deflection of beams under a given load combination is calculated using the formula shown below:

$$
\begin{aligned}
& \text { For point loads } \\
& \delta_{\mathrm{s}}=\sum\left(\mathrm{j}_{2} \frac{\mathrm{PL}^{3}}{48 E I}\right)
\end{aligned}
$$

Where the value of j_{2} is considered as a 'Duration of Loading' factor and is given under table 2.4 on $\mathrm{pg} 22 ; E$ is the modulus of elasticity of timber given under table $\mathrm{H} 2.1, \mathrm{pg} 155 ; \mathrm{l}$ is the second moment of inertia; L is the length of the member; P is the load combination used to check serviceability deflection.

The timber member is unseasoned, the j_{2} factor is equal to 1.0 , as per table 2.4 on pg 22 . The value of E derived from table H 2.1 is equal to 21.5 GPa , the value of $\mathrm{E}_{0.05}$ is derived as illustrated under Appendix B on pg 104, therefore $\mathrm{E}_{0.05}=0.5 \mathrm{E}_{\mathrm{ave}}, \mathrm{E}_{0.05}=10.75 \mathrm{GPa}$.

The value of I is given as the second moment of inertia which is calculated using the equation shown below

$$
\mathrm{I}_{\mathrm{x}}=\frac{b h^{3}}{12}
$$

Where $b=50 \mathrm{~mm}$ and $h=125 \mathrm{~mm}$. Since the member is unseasoned, 3 mm is removed from both breadth and height of the member. The calculation for second moment of inertia is shown below

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=\frac{(97 \mathrm{~mm})(97 \mathrm{~mm})^{3}}{12} \\
& \mathrm{I}_{\mathrm{x}}=7.382 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

As specified under AS1170.0:2002, if the serviceability deflection exceeds the limit state deflection of $\frac{S P A N}{200}$, then the selected timber member does not provide adequate conditions to be considered fit for human occupation.

Therefore, calculating allowable deflection
Allowable Serviceability Deflection $=$ Allow δ

$$
\begin{aligned}
& \text { Allowable } \delta=\frac{S P A N}{200} \\
& \text { Allowable } \delta=\frac{600 \mathrm{~mm}}{200} \\
& \text { Allowable } \delta=3 \mathrm{~mm}
\end{aligned}
$$

As per page 101, Table B1, the deflection is calculated using the following combination only i.e. $\mathrm{G}+\mathrm{Q}=88.3 \mathrm{kN}$. Length of member, $\mathrm{L}=0.6 \mathrm{~m}, \mathrm{E}_{0.05}=21.5 \mathrm{GPa}$ and the area is equal 122 mm x $47 \mathrm{~mm}=5,734 \mathrm{~mm}^{2}$

$$
\begin{gathered}
\delta_{\mathrm{s}}=(1.0) \frac{(88,300 \mathrm{~N})(600 \mathrm{~mm})^{3}}{48(21,500 \mathrm{MPa})\left(7.382 \times 10^{6} \mathrm{~mm}^{4}\right)} \\
\delta_{\mathrm{s}}=2.5 \mathrm{~mm} \\
\delta_{\mathrm{s}}>\text { Allow } \delta
\end{gathered}
$$

Therefore, the serviceability deflection successfully satisfies deflection conditions.

Adopt $100 \times 100 \mathrm{~mm}$ for the 'Side Timber Support' member.

3.6.3.3. Internal timber Member design

The Space Gass output loadings for the internal timber support member is presented in Table 137

Table 137 Space Gass output loadings for Frame 1; Side timber support member

Section	Member	Nodes	Moment (kNm)	Shear Force	Axial Force
Internal	6	21	0.0	(kN)	(kN)
Timber		5	0.0	0.0	66.6
Internal	25	15	0.5	0.0	66.9
Timber		19	-0.6	-0.5	43.4

Table 138 Space Gass output loadings for Frame 2; Side timber support member

Section	Member	Nodes	Moment (kNm)	Shear Force	Axial Force
Internal	6		(kN)	(kN)	
Timber		5	0.0	0.0	94.0

Table 139 Side Timber Support Member Properties

Length	$\approx 1.6 \mathrm{~m} \mid 1600 \mathrm{~mm}$
Area	$200 \mathrm{~mm} \times 100 \mathrm{~mm}$ (Reduced to 100 mm x 100mm; Based on Appendix 3.6Design outcomes)
Bending Strength	84 MPa
Tension, parallel to grain	Hardwood; 51 MPa
Compression	63 MPa
Elastic Modulus	21.5 GPa

consulting

Compression Capacity Check

$$
\emptyset N d . c .=\emptyset k_{1} k_{4} k_{6} k_{12} f^{\prime} c A^{\prime} c
$$

A_{c}, is equal to $197 \mathrm{~mm} \times 97 \mathrm{~mm}$ (Reduced by 3 mm due to unseasoned timber), equals $19,109 \mathrm{~mm}^{2}$; The value of k_{12} is not equal to 1.0. The calculation for k_{12} is shown below.

The calculated value of $P c S$ is equal to 15.47. Since $P c S>10$, the following formula is used to calculate k_{12} :

$$
\begin{gathered}
\mathrm{k}_{12}=1.5-0.05(P c S) \\
\mathrm{k}_{12}=1.5-0.05(15.47) \\
\mathrm{k}_{12}=0.73
\end{gathered}
$$

The capacity is calculated below.

$$
\begin{gathered}
\emptyset \mathrm{N}_{\text {d.c. }}=0.75 \times 0.94 \times 1.0 \times 1.0 \times 0.73 \times 64 \mathrm{MPa} \times 19,109 \mathrm{~mm}^{2} \\
\qquad \emptyset N_{d, c}=629.4 \mathrm{kN}>94.3 \mathrm{kN} ; \mathrm{OK} \\
\text { Decreasing size to } 100 \times 100 \mathrm{~mm}
\end{gathered}
$$

The capacity is calculated below.

$$
\begin{gathered}
\emptyset \mathrm{N}_{\text {d.c. }}=0.75 \times 0.94 \times 1.0 \times 1.0 \times 0.73 \times 64 \mathrm{MPa} \times(97 \times 97 \mathrm{~mm}) \mathrm{mm}^{2} \\
\emptyset N_{d, c}=310.0 \mathrm{kN}>94.3 \mathrm{kN} ; \mathrm{OK} \\
\text { Decreasing size to } 50 \times 100 \mathrm{~mm} \\
\emptyset \mathrm{~N}_{\text {d.c. }}=0.75 \times 0.94 \times 1.0 \times 1.0 \times 0.73 \times 64 \mathrm{MPa} \times(97 \times 47 \mathrm{~mm}) \mathrm{mm}^{2} \\
\emptyset N_{d, c}=191.3 \mathrm{kN}>94.3 \mathrm{kN} ; \mathrm{OK}
\end{gathered}
$$

Design capacity met, adopt $50 \times 100 \mathrm{~mm}$ from this point on

Shear Capacity Check

The beam design shear capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 33:

$$
V d=\varnothing k_{1} k_{4} k_{6} f^{\prime} s A^{\prime} s
$$

The design is safe if the capacity equation satisfies the following expression below

$$
V^{*} \leq V_{d}
$$

Conservatively take shear as ultimate load i.e. 0.5 kN . Recall that the dimensions b and d have shrunk by 3 mm since the member is unseasoned.

$$
\begin{gathered}
A s=\left(\frac{2}{3}\right)(47 m m \times 97 \mathrm{~mm}) \\
\mathrm{A}_{\mathrm{s}}=3,039.333 \mathrm{~mm}^{2}
\end{gathered}
$$

Substituting all values into shear capacity equation and solving for V_{d}

$$
\begin{gathered}
V_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 6.1 \mathrm{MPa} \times 3,039.3 \mathrm{~mm}^{2} \\
V_{d}=13.9 \mathrm{kN} ; V_{d}>\mathrm{V}^{*}, \mathrm{OK}
\end{gathered}
$$

Therefore, design capacity met, continue using $50 \times 100 \mathrm{~mm}$

Flexural Bending Capacity Check

The beam design bending strength capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 27:

$$
M d=\emptyset k_{1} k_{4} k_{6} k_{12} f^{\prime} b Z ; \text { Where } f^{\prime} b=84 \mathrm{MPa}
$$

The design is safe if the capacity equation satisfies the following expression below

$$
M^{*} \leq M_{d}
$$

Calculating the section modulus, Z for the member using the following equation listed below

$$
\begin{gathered}
Z=\frac{b d^{2}}{6} \\
Z=\frac{\left(47 \mathrm{~mm} x(97 \mathrm{~mm})^{2}\right)}{6} \\
Z=73,703.83 \mathrm{~mm}^{3}
\end{gathered}
$$

The value of k_{12} is not equal to 1.0

The calculation of S_{1} for is shown below:

$$
S_{1}=1.25 \frac{d}{b}\left(\frac{L_{a y}}{d}\right)^{0.5}
$$

The values used for this member are: $d=97 \mathrm{~mm}$, and $b=47 \mathrm{~mm}$. $\mathrm{L}_{\text {ay }}=1600 \mathrm{~mm}$:

$$
\begin{gathered}
S_{1}=1.25 \frac{97 m m}{47 m m}\left(\frac{1600 \mathrm{~mm}}{97 m m}\right)^{0.5} \\
=10.48
\end{gathered}
$$

The value of ρ_{b} for F34 unseasoned hardwood, the critical value, is 1.21, therefore:

$$
\begin{aligned}
\rho_{b} S= & 10.48 x 1.21 \\
& =12.68
\end{aligned}
$$

Therefore, as per 3.2.4(a) of AS 1720.1-2010 as $4.74>10, \mathrm{k}_{12}$ must be calculated using:

$$
\begin{gathered}
k_{12}=1.5-0.05 \rho_{b} S \\
k_{12}=1.5-0.05(12.68) \\
k_{12}=1.5-0.05(12.68)
\end{gathered}
$$

consulting

$$
k_{12}=0.866
$$

It may also be assumed that the 'Timber Arch' member is restraint along the compression face, and that purlins are spaced at a maximum of 200 cts, therefore Lay is set to 200 mm for Timber Arch, however it is conservative to adopt the k_{12} value as it is more critical.

Substituting all values into design capacity equation and solving for M_{d}

$$
\begin{gathered}
M_{d}=0.75 \times 1.0 \times 1.0 \times 0.866 \times 84 \mathrm{MPa} \times 73,703.8 \mathrm{~mm}^{3} \\
M_{d}=4.01 \mathrm{kNm} ; M_{d}>\mathrm{M}^{*}
\end{gathered}
$$

Adopt 50mmx100mm for the 'Internal' member.

Deflection Serviceability Check

$$
\delta_{\mathrm{s}}=\sum\left(\mathrm{j}_{2} \frac{\mathrm{PL}^{3}}{48 E I}\right)
$$

The timber member is unseasoned, the j_{2} factor is equal to 1.0 , as per table 2.4 on pg 22 . The value of E derived from table H 2.1 is equal to 21.5 GPa .

Where $b=50 \mathrm{~mm}$ and $h=75 \mathrm{~mm}$. Since the member is unseasoned, 3 mm is removed from both breadth and height of the member. The calculation for second moment of inertia is shown below

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=\frac{(47 \mathrm{~mm})(97 \mathrm{~mm})^{3}}{12} \\
& \mathrm{I}_{\mathrm{x}}=3.574 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Therefore, calculating allowable deflection

Allowable Serviceability Deflection $=$ Allow δ

$$
\begin{gathered}
\text { Allowable } \delta=\frac{S P A N}{200} \\
\text { Allowable } \delta=\frac{1600 \mathrm{~mm}}{200}
\end{gathered}
$$

$$
\text { Allowable } \delta=8 \mathrm{~mm}
$$

Calculating deflection under dead load combination only i.e. $G+Q=94,300 \mathrm{~N}$. Length of member, $\mathrm{L}=0.6 \mathrm{~m}, \mathrm{E}_{0.05}=21.5 \mathrm{GPa}$

$$
\begin{gathered}
\delta_{\mathrm{s}}=(1.0) \frac{(94.300 \mathrm{~N})(1600 \mathrm{~mm})^{3}}{48(21,500 \mathrm{MPa})\left(3,574 \times 10^{6} \mathrm{~mm}^{4}\right)} \\
\delta_{\mathrm{s}}=104 \mathrm{~mm}
\end{gathered}
$$

$$
\delta_{\mathrm{s}}<\text { Allow } \delta
$$

Therefore, the serviceability deflection does not satisfy deflection conditions. Therefore, increasing size back up to $225 \times 100 \mathrm{~mm}$.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{x}}=\frac{(97 \mathrm{~mm})(222 \mathrm{~mm})^{3}}{12} \\
\mathrm{I}_{\mathrm{x}}=88.44 \times 10^{6} \mathrm{~mm}^{4} \\
\delta_{\mathrm{s}}=(1.0) \frac{(94.300 \mathrm{~N})(1600 \mathrm{~mm})^{3}}{48(21,500 \mathrm{MPa})\left(88.44 \times 10^{6} \mathrm{~mm}^{4}\right)}
\end{gathered}
$$

$\delta_{s}=4.2 \mathrm{~mm}>$ Allow δ; Adopt $225 \times 100 \mathrm{~mm}$ for 'internal timber members'

3.6.3.4. Timber arch member design

The Space Gass output loadings for the timber arch support member is presented in Table 140

Table 140 Space Gass output loadings for Frame 2; Side timber support member

Section	Member	Nodes	Moment $(k N m)$	Shear Force	Axial Force
Timber Arch	19	17	1.1	4.4	$(k N)$
Timber Arch	16	4	-5.2	24.5	68.1
		14	Max (3.22)	28.4	86.4

Table 141 Side Timber Support Member Properties

Timber Arch Support Member Properties	
Length (Lay)	$\approx 0.2 \mathrm{~m}$
Area	$\approx 0.45 \mathrm{~m}$
	$125 \mathrm{~mm} \times 100 \mathrm{~mm}$ (Increased to 225mm x100mm; Previous
section deflection	
design outcomes)	

Compression Capacity Check

The compression capacities are identical to whatever compression capacity is achieved by the side timber member. The calculation for the original size of the member $(125 \times 100 \mathrm{~mm})$ is shown below.

$$
\begin{gathered}
\emptyset N d . c .=0.75 \times 0.94 \times 1.0 \times 1.0 \times 1.0 \times 64 \mathrm{MPa} \times 11,834 \mathrm{~mm}^{2} \\
\emptyset N d . c .=534.0 \mathrm{kN}>103.6 \mathrm{kN}
\end{gathered}
$$

Shear Capacity Check

The beam design shear capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 33 :

$$
V d=\emptyset k_{1} k_{4} k_{6} f^{\prime} s A^{\prime} s
$$

The design is safe if the capacity equation satisfies the following expression below

$$
V * \leq V d
$$

The ultimate shear force is located $1.5 d$ from either of member supports. The shear force for this member is equal to -25.2 kN , and the length is 450 mm . The depth of the member is 100 mm , therefore $1.5 \mathrm{~d}=150$, the shear force at this point is calculated below via equal triangles.

$$
\begin{gathered}
V * \text { at } 1.5 d \text { from support }=V * x \frac{450 \mathrm{~mm}-150 \mathrm{~mm}}{450 \mathrm{~mm}} \\
\mathrm{~V}^{*} \text { at } 1.5 d \text { from support }=(28.4 \mathrm{kN}-1.6 \mathrm{kN}) x\left(\frac{450 \mathrm{~mm}-150 \mathrm{~mm}}{450 \mathrm{~mm}}\right)+1.6 \mathrm{kN} \\
V * \text { at } 1.5 d \text { from support }=17.87 \mathrm{kN}+1.6 \mathrm{kN} \\
V * \text { at } 1.5 d \text { from support }=19.5 \mathrm{kN}
\end{gathered}
$$

Recall that the dimensions b and d have shrunk by 3 mm since the member is unseasoned.

$$
\begin{gathered}
A s=\left(\frac{2}{3}\right)(97 m m \times 122 \mathrm{~mm}) \\
A s=7,889.3 \mathrm{~mm}^{2}
\end{gathered}
$$

Substituting all values into shear capacity equation and solving for V_{d}

$$
V_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 6.1 \mathrm{MPa} \times 7,889.3 \mathrm{~mm}^{2}
$$

$V_{d}=36,093 N>\mathrm{V}^{*}$, Shear capacity met; however too strong, reduce size to $75 \times 50 \mathrm{~mm}$

$$
V_{d}=10.32 \mathrm{kN}<\mathrm{V}^{*}, \text { Not OK, increase size to } 100 \times 100 \mathrm{~mm}
$$

$$
V_{d}=28.7 \mathrm{kN}>\mathrm{V}^{*}(1 \mathrm{~m} \text { Load Width }), \mathrm{OK} ; \text { Adopt } 100 \times 100 \mathrm{~mm} \text { from this point on }
$$

Extra size calculation; increase size to $225 \times 100 \mathrm{~mm}$

$$
V d=65.7 k N
$$

Flexural Bending Capacity Check

The beam design bending strength capacity is calculated using the following formula given under AS/NZS 1720.1:2010, page 27:

$$
\begin{gathered}
M d=\emptyset k_{1} k_{4} k_{6} k_{12} f^{\prime} b Z \\
\text { Where } f^{\prime} b=84 \mathrm{MPa}
\end{gathered}
$$

The design is safe if the capacity equation satisfies the following expression below

$$
M^{*} \leq M_{d}
$$

Calculating the section modulus, Z for the member using the following equation listed below

$$
\begin{gathered}
Z=\frac{b d^{2}}{6} \\
Z=\frac{\left(97 \mathrm{~mm} x(97 \mathrm{~mm})^{2}\right)}{6} \\
Z=152,112 \mathrm{~mm}^{3}
\end{gathered}
$$

The value of k_{12} is equal to 1.0

Substituting all values into design capacity equation and solving for M_{d}

$$
\begin{gathered}
M_{d}=0.75 \times 1.0 \times 1.0 \times 1.0 \times 84 \mathrm{MPa} \times 152,112.2 \mathrm{~mm}^{3} \\
M_{d}=9.58 \mathrm{kNm}>\mathrm{M}^{*}
\end{gathered}
$$

Adopt 75 mmx 50 mm for the 'Internal' member from this point on.

Deflection Serviceability Check

$$
\delta_{\mathrm{s}}=\sum\left(\mathrm{j}_{2} \frac{\mathrm{PL}^{3}}{48 E I}\right)
$$

The timber member is unseasoned, the j_{2} factor is equal to 1.0 , as per table 2.4 on pg 22 . The value of E derived from table H 2.1 is equal to 21.5 GPa .

Where $\mathrm{b}=100 \mathrm{~mm}$ and $\mathrm{h}=225 \mathrm{~mm}$. Unseasoned, remove 3 mm .

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=\frac{(97 \mathrm{~mm})(97 \mathrm{~mm})^{3}}{12} \\
& \mathrm{I}_{\mathrm{x}}=7.377 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Therefore, calculating allowable deflection

Allowable Serviceability Deflection $=$ Allow δ

$$
\begin{gathered}
\text { Allowable } \delta=\frac{S P A N}{200} \\
\text { Allowable } \delta=\frac{450 \mathrm{~mm}}{200} \\
\text { Allowable } \delta=2.3 \mathrm{~mm}
\end{gathered}
$$

Calculating deflection under dead load combination only i.e. $G+Q=103.6 k N$. Length of member, $\mathrm{L}=0.6 \mathrm{~m}, \mathrm{E}_{0.05}=21.5 \mathrm{GPa}$

$$
\begin{gathered}
\delta_{\mathrm{s}}=(1.0) \frac{(103,600 \mathrm{~N})(450 \mathrm{~mm})^{3}}{48(21,500 \mathrm{MPa})\left(7.38 \times 10^{6} \mathrm{~mm}^{4}\right)} \\
\delta_{\mathrm{s}}=1.2 \mathrm{~mm} \\
\delta_{\mathrm{s}}>\text { Allow } \delta
\end{gathered}
$$

Adopt $100 \times 100 \mathrm{~mm}$ for 'timber arch member'

3.6.3.5. Bearing Capacity Design

Flat End Bearing Check

The Space Gass output loadings for the internal timber support member is presented in Table 142

Table 142 Space Gass output loadings; Member 5

Section	Member	Nodes	Moment $(k N m)$	Shear Force	Axial Force
Internal	5		0.0	(kN)	(kN)
Timber		9	0.0	0.0	104.8

The internal member is currently pressing against the surface of the top arching timber member, the bearing capacities for this member must be calculated using Clause 3.2.6; the formula is shown below.

$$
N d p=\emptyset k_{1} k_{4} k_{6} k_{7} f^{\prime} p A^{\prime} p
$$

Where, $N d, p>N p^{*} N p^{*}=$ Design load effect in bearing

Where: $\emptyset=0.75, k_{1}=0.94, k_{4}=1, k_{6}=1.0$

Timber is non-ash, hardwood, as per Table H2.3, the joint group is J 2 and strength group is S 4 , therefore the bearing characteristic strength is ($f^{\prime} p$) $8.6 \mathrm{MPa} . \mathrm{K}_{7}$ was then determined using Table 2.6 the depth bearer member, 225 mm , therefore K_{7} is equal to 1 .

The final modifier, A_{p}, was then determined. This modifier takes into account the contact area between the bearer and the arch timber member, the contact area between these is:

$$
\begin{gathered}
A_{p}=222 \mathrm{~mm} \times 97 \mathrm{~mm} \text { (allowing for 3mm shrinkage) } \\
A_{p}=21,534 \mathrm{~mm}^{2} \\
N d p=\emptyset k_{1} k_{4} k_{6} k_{7} f^{\prime} p A^{\prime} p=0.75 \times 0.94 \times 1 \times 1 \times 1 \times 8.6 M P a \times 21,534 \mathrm{~mm}^{2} \\
N d, p=130,560.6 \mathrm{~N}>104.8 \mathrm{kN}
\end{gathered}
$$

The bearing capacity between the internal member and the top arching section has been satisfied.

Notched End Bearing Check

The Space Gass output loadings for the internal timber (25), notched between member 16 and 17 is presented in Table 143

Table 143 Space Gass output loadings; Member 25

Section	Member	Nodes	Moment (kNm)	Shear Force	Axial Force
Internal	25	15	0.97	(kN)	(kN)
Timber		19	0.54	-0.9	86.7

The figure below presents the notched member and its angle to the arching timber member

Figure 338 Notched bearing section detail

The design bearing capacity at an angle to the grain is calculated using Clause 3.2.6.3, where

$$
\begin{gathered}
N_{\text {d.I }}>N_{l^{*}} \\
N d l=\emptyset k_{1} k_{4} k_{6} f^{\prime} l A^{\prime} l
\end{gathered}
$$

Where, $f^{\prime} l$ is the chara. Capacity parallel to grain, $A_{l}=$ bearing area for loading parallel to grain.

In this case, let the main member of the connection be the arch timber member.

Therefore, the capacity is calculated using:

$$
N_{d \emptyset}=\frac{N_{d . l} N_{d . p}}{N_{d . l} \operatorname{Sin}^{2} \emptyset+N_{d . p} \operatorname{Cos}^{2} \emptyset}
$$

Where, $\mathrm{N}_{\mathrm{d}, \mathrm{p}}=130,560.6 \mathrm{~N}, \mathrm{Al}=222 \mathrm{~mm} \times 97 \mathrm{~mm}$ (allowing for 3 mm shrinkage) $=21,534 \mathrm{~mm}^{2}$, and $f^{\prime} l=23 \mathrm{MPa}$ (Table H2.2)
$N_{\text {d. } I}=\emptyset \mathrm{k}_{1} \mathrm{k}_{4} \mathrm{k}_{6} \mathrm{f}^{\prime} \mathrm{A}_{\mathrm{lp}}=0.75 \times 0.94 \times 1 \times 1 \times 1 \times 23 \mathrm{MPa} \times 21,534 \mathrm{~mm}^{2}$

$$
\begin{gathered}
N_{d . l}=349.2 \mathrm{kN} \\
N_{d \emptyset}=\frac{(349.2 k N)(130.56 k N)}{(349.2 k N) \operatorname{Sin}^{2}(65)+(130.56) \operatorname{Cos}^{2}(65)} \\
N_{d \emptyset}=146.9 \mathrm{kN}>87.6 \mathrm{kN}
\end{gathered}
$$

The bearing capacity of the notched connection is OK

3.6.3.6. Bolt Design and Bearing Capacity Check

Bolt Design; Internal Section

This connection sustains the highest loads in the support frame and therefore it is conservatively assumed that all bolt connections should adopt the final result from this critical case.

The design of the connection at the internal section must be considered as per AS1720-2010. The applicable standards and formulas used to design this connection are:
$>$ AS1720-2012:

- Clause 4.4.2.4; Equation 4.4(AS1720.1-2010) - Hankinson's Formula

$$
Q s k=\frac{Q \operatorname{skl} x Q \operatorname{skp}}{Q \operatorname{skl}\left(\operatorname{Sin}^{2} \emptyset\right)+Q \operatorname{skp}\left(\operatorname{Cos}^{2} \emptyset\right)}
$$

- Table 4.10 A and B; and Table 4.9 A and B - Unseasoned Connection
- Clause 4.4.4; Spacing, edge and end distance for bolts

The internal member joint currently holds 3 timber members together through an effective timber thickness ($b_{\text {eff }}$) of 100mm; for bolts parallel to grain - Table 4.9A and perpendicular to the grain - Table 4.10A of AS1720.1. The sketch below represents the connection of the internal members at the approximate centre point of the support structure.

Figure 339 Sketch of internal member connection

All member thickness are 100 mm . The loadings on these members are simplified by removing smaller axially loaded members from the figure, this simplification of the highest loadings acting on the connection are illustrated in Figure 340

Figure 340 Simplification of joint connection via largest loadings

The highest loadings in member 1 and 2 are 53.5 kN and 104.7 kN respectively

FUTURE

- cussulus

Error! Reference source not found.The sketches shown below are used to determine the required bolt connection capacity. These sketches shown the angles between the inclined member and the straight member.

Figure 341 Sketch of internal joint with angles of members

Determining factors required for calculation of Equation 4.4(AS1720.1-2010).

- $\quad \mathrm{k}_{16}$ depends on the No. of side plates given in the design, which is set to 1.0
- k_{17} depends on the No. and size of the chosen bolt, for this trial calculation, choosing M24 bolts in unseasoned timber and n is the number of bolts used, set n to $4 ; k_{17} 1.0$, as per table 4.12.

The formula of $\mathrm{Q}_{\text {sk }} \emptyset$ requires calculations for Qskp (Perpendicular to the grain) and Qskl (Parallel to the grain). Timber is non-ash, hardwood, as per Table H 2.3 , the joint group is J2 and strength group is S 4 .

The values of $\mathrm{Q}_{\mathrm{k} \mid}$ are given in table 4.9(B) for unseasoned timber, where $\mathrm{Q}_{\mathrm{sk}}=2 \mathrm{Qkl}$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{sk} \mid}=2(44,400) \\
& \mathrm{Q}_{\mathrm{sk} \mid}=88,800 \mathrm{~N}
\end{aligned}
$$

Determining loading capacity perpendicular to the grain (Qskp)

$$
\begin{gathered}
\text { Where } Q_{k p}=Q_{s k} \text {, as per Table 4.10(B) } \\
\qquad Q_{s k p}=21,000 \mathrm{~N}
\end{gathered}
$$

Therefore, the characteristic capacity is calculated using Hankinson's Formula:

$$
Q s k=\frac{Q s k l x Q s k p}{Q \operatorname{skl}\left(\operatorname{Sin}^{2} \emptyset\right)+Q \operatorname{skp}\left(\operatorname{Cos}^{2} \emptyset\right)}
$$

$$
\begin{aligned}
& \text { Where } \emptyset=40^{\circ}, \text { Qskp }=26,880 \mathrm{~N} \text { and } \mathrm{Qskl}=39,400 \mathrm{~N} \\
& Q s k=\frac{88,800 \mathrm{~N} \times 21,000 \mathrm{~N}}{88,800 \mathrm{~N}\left(\operatorname{Sin}^{2} 40\right)+21,000 \mathrm{~N}\left(\operatorname{Cos}^{2} 40\right)}
\end{aligned}
$$

$$
Q s k=38.05 \mathrm{kN} \text {; this answer is used to evaluate maximum capacity. }
$$

The final capacity is calculated with regards to orientation of the member, furthermore the capacity of the timber member depends on whether the forces are acting parallel or perpendicular to the grain. For this case, the loading is acting parallel and at an incline to the horizontal/vertical. The capacities for the inclined and parallel direction are shown below.

The final capacity parallel to the grain:

$$
\begin{gathered}
\emptyset \mathrm{N}_{\mathrm{d}, \mathrm{j}}=\emptyset \mathrm{k}_{1} \mathrm{k}_{16} \mathrm{k}_{17 \mathrm{n}} \mathrm{Qsk} ; \mathrm{Qsk}=21,000 \mathrm{~N} \\
\varnothing \mathrm{~N}_{\mathrm{d}, \mathrm{j}}=0.85 \times 0.94 \times 1.0 \times 1.0 \times 4 \times 21,000 \mathrm{~N} \\
\phi \mathrm{~N}_{\mathrm{d}, \mathrm{j}}=67, \mathbf{1 1 6 N}>53.5 \mathrm{kN} ; \mathbf{O K} \text { for 4-M24 bolts }
\end{gathered}
$$

The final capacity inclined to the grain:

$$
\begin{gathered}
\emptyset \mathrm{N}_{\mathrm{d}, \mathrm{j}}=\emptyset \mathrm{k}_{1} \mathrm{k}_{16} \mathrm{k}_{17} \mathrm{nQsk} ; \mathrm{Qsk}=38.05 \mathrm{~N} \\
\emptyset \mathrm{~N}_{\mathrm{d}, \mathrm{j}}=0.85 \times 0.94 \times 1.0 \times 1.0 \times 4 \times 38,050 \mathrm{~N} \\
\emptyset \mathrm{~N}_{\mathrm{d}, \mathrm{j}}=\mathbf{1 2 1 , 6 0 7 . 8 N}>\mathbf{1 0 4 . 7} \mathbf{k N} ; \mathbf{O K} \text { for 4-M24 bolts } \\
\text { Adopt 4-M24 Bolts for connection. }
\end{gathered}
$$

Bolt Design; Detailing

Bolt spacing, edge and end distances comply with Clauses 4.4.4.2 to 4.4.4.4 of AS1720.1-2010.

In this case, Cl 4.4 .4 .4 states for loads acting 30 to 90 degrees shall be taken as perpendicular to the beam i.e. Cl4.4.4.3. Distance a is 2.5D for a b/D ratio of 2 , and increased proportionately to $5 D$ for $a b / D$ of 6 or more.

Bolted Connection Detail for Internal Connection

Choose $225 \times 100 \mathrm{~mm}$ for all timber members, as per conclusion statement.

$$
\frac{b}{D}=\frac{100}{24}=4.167<6, \text { therefore } a \approx 3.85 x 24 \mathrm{~mm} \approx 90 \mathrm{~mm}
$$

Edge distance shall be $4 D=4 \times 24 \mathrm{~mm}=96 \mathrm{~mm}$

The figure below shows the allowable bolt zone for M16 Bolts, the figure displays the allowable zone for bolts to be connected in.

Figure 342 Internal Bolt, Allowable Zone for M16

This would not accommodate 6M16 to resist the applied capacity. It is recommended that $250 \times 100 \mathrm{~mm}$ internal members be used to provide enough room for bolt connections.

Figure 343 Internal Bolt, Allowable Zone for M24 for 250x100mm

The figure below shows that the spacing is insufficient for the M24 bolt diameter and a wider timber member. In this case, a wider timber member must be chosen $-300 \mathrm{mmx100mm}$.

Figure 344 Internal Bolt, Allowable Zone for M24 for 300x100mm

The figure below shows that the spacing is OK, therefore adopt $300 \mathrm{~mm} \times 100 \mathrm{~mm}$ for all internal members from this point onward.

Figure 345 Internal Section Bolt Connection Detail for M24 for 300x100mm

Figure 346 Support Bolt Connection Detail for M24 for 300x100mm

Figure 347 Arch and Internal Member, Allowable Zone for M24 for 300x100mm

Figure 348 Arch and Internal Member Connection Detail for M24 for 300×100mm

3.6.3.7. Purlin/Joist Design

There exists several types of purlin design that can be utilised for the support system, these designs are shown below and are dependent on the chosen load width.

The diagram below shows the purlin and arch structure configuration for a 1 m load width. Purlins are placed on the surface of three bearers i.e. arch timber members, over a total span of 2 m . Two, Frame 2 s are used for the middle and side arch structures to allow for 1 m clearance for pipe installation.

Figure 349 Purlin design for 1m load width (Hydro-Future)

The diagram below shows the purlin and arch structure configuration for a 2 m load width. Similar to the 1 m load width, the purlins replicate the same function of joists placed on the surface of two bearers i.e. arch timber members. This design consists of a two arch structures made from one Frame 1 and one Frame 2 supports.

Figure 350 Purlin design for $2 m$ load width

Applied Loadings

The applied loadings on both the 1 m and 2 m load widths shall fall within a load area envelope of $0.45 \mathrm{~m} \times L W$ for each joist end. The length, 0.45 m , is the distance between each node of the arch member given in Space Gass. It is assumed that placing a purlin at each of these nodes locations will increase simplicity of calculations. The diagram below shows the applied load envelop on each section of the 1 m and 2 m load widths.

Figure 351 Load Area/Envelope for each joist

It is assumed that the purlin design is dependent upon the highest applied loading on the culvert structure within the load area shown in Figure 352 The node locations are presented in the figure below.

Figure 352 Node locations along arch of support system

The loadings at two node locations; 9 and 17, are shown in the tables below where the highest loading is chosen for the design of the purlin.

Table 144 - (Dead Load) Node 9 and 17; Soil, vertical and horizontal loads

Location	Soil Pressure	
	Coefficient $\left(k_{\mathrm{a}}\right)$	Vertical

Table 145 - (Live Load) Node 9 and 17; M1600 Traffic Case 1, vertical and horizontal loads

Location	Soil Pressure	Load - UDL (kPa)	
	Coefficient $\left(k_{\mathrm{a}}\right)$	Vertical	Horizontal
$\mathbf{A \approx 9}$	0.42	29	12

- consulting

$E \approx 17$	0.39	4	2

The summation of the vertical and horizontal pressures have the highest loadings are located at E or node 17.

The self-weight of the culvert is equal to $0.06 \mathrm{kN} / \mathrm{m}(\mathrm{kPa})$ for the vertical direction. The density of F34 Ash-Hardwood is $1.15 \mathrm{kN} / \mathrm{m}^{3}$. The loadings acting at node 17 are shown in Table 146

Table 146 Vertical and horizontal loads at Node 17

Location	Load - UDL (kPa)	
	Vertical	Horizontal
Soil Load (G)	4	2
Traffic Load (LL)	47	18
Culvert Self-Weight (G)	0.06	-
Purlin Self-Weight (G)	$0.05 \mathrm{~m} \times 1.15 \mathrm{kN} / \mathrm{m}^{3} \approx$	-
	0.06	

For design simplification, it is assumed that the higher vertical loadings are acting perpendicular to the purlin. The ultimate load calculation for these loadings is shown below

$$
\begin{gathered}
W u=1.2 G+1.5 Q \\
W u=1.2(4 k P a+2 x 0.6 k P a)+1.5(47 k P a) \\
W \boldsymbol{W u}=76.7 \mathbf{k P a}
\end{gathered}
$$

The UDL acting on a load width of 0.45 m (i.e. distance between nodes and purlins) is:

$$
\begin{gathered}
U D L=L W \times 76.7 \mathrm{kPa} \\
U D L=0.45 \mathrm{~m} 76.7 \mathrm{kPa} \\
\boldsymbol{U D L}=\mathbf{3 4 . 5} \mathbf{k N} / \mathbf{m}
\end{gathered}
$$

Decreasing the distance between purlins will decrease applied UDL i.e. decrease to 0.2 m

$$
\begin{gathered}
U D L=0.1 \mathrm{~m} 76.7 \mathrm{kPa} \\
U D L=0.1 \mathrm{~m} 76.7 \mathrm{kPa} \\
\boldsymbol{U D L}=7.7 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

The distance between purlins is directly proportional to the calculated UDL.

Design Calculations

The preliminary size for all purlin timber members is $50 \times 50 \mathrm{~mm}$. Assume that purlin is glued to the surface of arch culvert.

The first calculation is for a LW of $\mathbf{1 m}$, as per figure below.

Table 147 Figure of design scenario, LW = 1m

Since the purlin is statically indeterminate, the support system must be analysed using a finite element software i.e. Space Gass.

Figure 353 Purlin SFD and BMD

Solving for serviceability deflection

As per Appendix G of AS1720.1-2010, Table G1 gives the load combinations for specific applications and actions. The load combination used to determine serviceability deflection is shown below.

$$
\begin{gathered}
S=1.2 \mathrm{G}+1.5 \mathrm{Q} \text { (Short Term Imposed Action) } \\
\text { Therefore, } \mathrm{S}=\mathrm{W}_{\mathrm{u}}=34.5 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

The length between supports is $1 \mathrm{~m}, \mathrm{E}=21,500 \mathrm{MPa}, \mathrm{Ix}=520,833.33 \mathrm{~mm}^{4}$ (For $50 \times 50 \mathrm{~mm}$) and $J_{2}=1.0$ for short term loadings. The maximum deflection of a joist ranges from span/400 to span/250, in this case choose span/250 $=1000 \mathrm{~mm} / 250=4 \mathrm{~mm}$

$$
\begin{gathered}
\delta_{\mathrm{s}}=\sum\left(\mathrm{j}_{2} \frac{5}{384} \frac{w L^{4}}{E I}\right) \\
\delta=1 \times \frac{5(34.5 \mathrm{kN} / \mathrm{m})(1000 \mathrm{~mm})^{4}}{384(21,500 M P a)\left(520,833.3 \mathrm{~mm}^{4}\right)} \\
\delta=200 \mathrm{~mm}-\text { Not satisfactory. }
\end{gathered}
$$

The deflection is too large and must be reduced. Deflection is reduced by decreasing distance between purlins or increasing member size, however an increased purlin size could change the dimensions of the entire arch culvert system and is therefore not recommended.

Decreasing distance between purlins to 0.2 m i.e. UDL $=15.3 \mathrm{kN} / \mathrm{m}$

$$
\delta=1 \times \frac{5(15.3 \mathrm{kN} / \mathrm{m})(1000 \mathrm{~mm})^{4}}{384(21,500 M P a)\left(520,833.3 \mathrm{~mm}^{4}\right)}
$$

$\delta=17.8 \mathrm{~mm}<4 \mathrm{~mm}$, Not acceptable, however since the structure is temporary and is not required for aesthetic improvement of its surroundings, a value for serviceability can be assumed i.e. 20 mm . In such a case, this serviceability deflection is OK.

Solving for Flexural Capacity

$$
M d=\emptyset k_{1} k_{4} k_{6} k_{9} k_{12} f^{\prime} b Z, \text { Where } f^{\prime} b=84 \mathrm{MPa}
$$

The factors for F34 timber in a short-term case scenario are: $\emptyset=0.75, k_{1}=0.94, k_{4}=1.0$ and $k_{6}=1.0$. All other factors are calculated below.

Strength Sharing Factor, $\mathbf{k}_{\mathbf{g}}$ is calculated using Clause 2.4.5.3, where:

$$
k_{9}=g 31+(g 32-g 31)[1-2 s / L]
$$

where g_{31} and g_{32} are derived from Table $2.7, \mathrm{~s}=$ centre to centre spacing, and L is effective span of parallel members. In this case, there exist approximately 10 nodes thus 20 purlins in parallel that sustain the loading, thus $\mathrm{n}_{\mathrm{com}}=1$ and $\mathrm{n}_{\text {mem }}=20$. From Table 2.7 of AS1720, $\mathrm{g}_{31}=$

$$
\begin{gathered}
1.0 \text { and } \mathrm{g}_{32}=1.33, \mathrm{~s}=200 \mathrm{~mm} \text { and } \mathrm{L}=1 \mathrm{~m} \\
\mathrm{k}_{9}=1.0+(1.33-1.0)[1-2(200 \mathrm{~mm}) / 1000 \mathrm{~mm}], \\
\mathbf{k}_{9}=1.2
\end{gathered}
$$

Stability Factor, \mathbf{k}_{12} is calculated using Clause 3.2.4,, where:

$$
S_{1}=1.25 \frac{d}{b}\left(\frac{L_{a y}}{d}\right)^{0.5}
$$

The values used for this member are: $d=222 \mathrm{~mm}$, and $b=97 \mathrm{~mm}$. $\mathrm{L}_{\text {ay }}=600 \mathrm{~mm}$:

$$
\begin{gathered}
S_{1}=1.25 \frac{50 \mathrm{~mm}}{50 \mathrm{~mm}}\left(\frac{1000 \mathrm{~mm}}{50 \mathrm{~mm}}\right)^{0.5} \\
=5.6
\end{gathered}
$$

The value of ρ_{b} for F34 unseasoned hardwood, the critical value, is 1.21 , therefore:

$$
\rho_{b} S=5.6 \times 1.21=6.7
$$

k_{12} is taken as 1.0.
Therefore:

$$
\begin{gathered}
M d=\emptyset k_{1} k_{4} k_{6} k_{9} k_{12} f^{\prime} b Z M_{d}= \\
0.75 \times 1.0 \times 1.0 \times 1.2 \times 1.0 \times 84 M P a \times \frac{\left(47 m m \times(47 \mathrm{~mm})^{2}\right)}{6} \mathrm{~mm}^{3}
\end{gathered}
$$

$$
M_{d}=1.3 \mathrm{kNm}
$$

Therefore, $M_{d}<M^{*}$, where $M^{*}=4.31 \mathrm{kNm}$

Not good, reduce distance between purlins to 100 mm i.e. UDL $=0.1 \mathrm{~m} \times 76 \mathrm{kPa}$.

$$
\text { SpaceGass output for } \mathrm{M}^{*}=-0.96 \mathrm{kNm}<\mathrm{M}_{\mathrm{d}}
$$

Therefore, for 1 m load width purlin configuration design, adopt $50 \times 50 \mathrm{~mm}$ at 100 cts .

The first calculation is for a LW of $\mathbf{1 m}$, as per figure below.

Table 148 Figure of design scenario, $L W=2 m$

All results are replicated with respect to a 2 m length purlin instead of a 1 m length purlin. The final capacity and chosen member size is shown below. No calculations are repeated

LW $=100 \mathrm{~mm}$ ie. 100 cts , therefore $\mathrm{UDL}=7.7 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{M}^{*}(\text { SpaceGass })=3.85 \mathrm{kNm}
$$

M_{d} for 50×50 not enough, choosing 50×100

$$
M_{d}=0.75 \times 1.0 \times 1.0 \times 1.2 \times 1.0 \times 84 \mathrm{MPa} \times \frac{\left(57 \mathrm{~mm} \times(97 \mathrm{~mm})^{2}\right)}{6} \mathrm{~mm}^{3}
$$

$$
M_{d}=5.57 \mathrm{kNm}>\mathrm{M}^{*}
$$

Therefore, for $\mathbf{2 m}$ load width purlin configuration design, adopt $50 \times 100 \mathrm{~mm}$ at 100 cts .

Connection between Arch and Purlin Members

3.6.3.8. Column to Base Design

The base of the arch culvert has a maximum stress capacity and therefore must incorporate a base structure to resist the loadings that are acting on it. The connection from the arch culvert members to the base is shown in the figure below.

Figure 354 Sketch of connection detail for column to base

All calculations for bearing capacity of the timber members, which states that the bearing capacity achieved was $130,560.6 \mathrm{~N}$ perpendicular to the grain for $225 \times 100 \mathrm{~mm}$. The chosen section sizes for the internal members are $300 \times 100 \mathrm{~mm}$, therefore the new capacity in bearing is approximately 174 kN , which satisfies all axial ultimate loadings.

The output reactions at the base connection is shown in the figure below.

Figure 355 Output Reaction Forces, BMD and SFD on base support plank of wood

These reaction forces are distributed onto a single section of F34, Ash timber, approximately $250 \times 25 \mathrm{~mm}$ in size. The output bending moment diagram and shear force diagram are relatively small i.e. $<0.03 \mathrm{kNm}$ and $<0.17 \mathrm{kN}$, therefore it is assumed that the chosen member is sufficiently strong enough to induce the applied loadings. The final drawing for the connection at the positions shown in Figure 355 is presented in the figure below.

Figure 356 Column to base connection detail

3.6.4. Summary of Design Capacity Results

3.6.4.1. Frame 1 Capacity Results

Table 149 Side Timber Support Member Capacities (FRAME 1)

Side Timber Support Member Capacities (FRAME 1)			
Capacity Tested	Ultimate Load	Dimensions Tested	Capacity Achieved
Compression	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=48.9 \mathrm{kN}\right) \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=97.8 \mathrm{kN}\right) \end{aligned}$	$225 \times 100 \mathrm{~mm}$ $125 \times 100 \mathrm{~mm}$ $75 \times 50 \mathrm{~mm}$	971.6 kN ; OK for 1 m and 2 m 534.0 kN ; OK for 1 m and 2 m 154.8 kN ; OK for 1 m and 2 m
Shear	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=16.5 \mathrm{kN}\right) \\ & \text { at } 1.5 \mathrm{~d} \text { from support }=13.5 \mathrm{kN} \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=33.1 \mathrm{kN}\right) \end{aligned}$	$125 \times 100 \mathrm{~mm}$ $75 \times 50 \mathrm{~mm}$ $100 \times 100 \mathrm{~mm}$ $225 \times 100 \mathrm{~mm}$	36.1 kN ; OK for 1 m and 2 m 10.32 kN ; NOT OK 28.7 kN ; OK for 1 m 65.7 kN ; OK for 1 m and 2 m
Flexural Bending	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=5.2 \mathrm{kNm}\right) \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=10.3 \mathrm{kNm}\right) \end{aligned}$	$100 \times 50 \mathrm{~mm}$ $125 \times 50 \mathrm{~mm}$	4.64kNm; NOT OK 7.45kNm; OK for 1m
Deflection	Deflection ($\mathrm{Max}=2 \mathrm{~mm}$)	$125 \times 50 \mathrm{~mm}$	1.6mm Deflection; OK

Table 150 Internal Timber Support Member Capacities (FRAME 1)

Internal Timber Support Member Capacities (FRAME 1)			
Capacity Tested	Ultimate Loads	Dimensions Tested	Capacity Achieved
Compression	$\begin{gathered} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=94.3 \mathrm{kN}\right) \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=\right. \\ 133.7 \mathrm{kN}) \end{gathered}$	$200 \times 100 \mathrm{~mm}$ $100 \times 100 \mathrm{~mm}$ $50 \times 100 \mathrm{~mm}$	629.4 kN ; OK for 1 m and 2 m 310.0 kN ; OK for 1 m and 2 m 191.3kN; OK for 1m
Shear	1 m Load-width (Ns* $=0.5 \mathrm{kN}$) 2 m Load-width (Ns* $=0.9 \mathrm{kN}$)	$125 \times 100 \mathrm{~mm}$ $75 \times 50 \mathrm{~mm}$ $100 \times 100 \mathrm{~mm}$ $225 \times 100 \mathrm{~mm}$	36.1 kN ; OK for 1 m and 2 m 10.32 kN ; OK for 1 m and 2 m 28.7 kN ; OK for 1 m and 2 m 65.7 kN ; OK for 1 m and 2 m
Flexural Bending	1 m Load-width ($\mathrm{M}^{*}=-0.6 \mathrm{kNm}$) 2 m Load-width $\left(\mathrm{M}^{*}=-0.9 \mathrm{kNm}\right)$	$50 \times 100 \mathrm{~mm}$	4.01 kNm ; OK for 1 m and 2 m
Deflection	$(\mathrm{Max}=8 \mathrm{~mm})$	$50 \times 100 \mathrm{~mm}$ $225 \times 100 \mathrm{~mm}$	104 mm Deflection; NOT OK 4.3mm Deflection; OK

Table 151 Timber Arch Support Member Capacities (FRAME 1)

Timber Arch Member Capacities (FRAME 1)			
Capacity Tested	Capacity Tested	Dimensions Tested	Capacity Achieved
Compression	$\begin{aligned} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}\right. & =55.1 \mathrm{kN}) \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}\right. & =103.6 \mathrm{kN}) \end{aligned}$	$\begin{gathered} 225 \times 100 \mathrm{~mm} \\ 125 \times 100 \mathrm{~mm} \\ 75 \times 50 \mathrm{~mm} \end{gathered}$	971.6 kN ; OK for 1 m and 2 m 534.0kN; OK for 1 m and 2 m 154.8 kN ; OK for 1 m and 2 m
Shear	$\begin{gathered} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=25.2 \mathrm{kN}\right) \\ \text { at } 1.5 \mathrm{~d}=19.5 \mathrm{kN} \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=50.41 \mathrm{kN}\right) \\ \text { at } 1.5 \mathrm{~d}=33.1 \mathrm{kN} \end{gathered}$	$\begin{gathered} 125 \times 100 \mathrm{~mm} \\ 75 \times 50 \mathrm{~mm} \\ 100 \times 100 \mathrm{~mm} \\ 225 \times 100 \mathrm{~mm} \end{gathered}$	36.1 kN ; OK for 1 m 10.32 kN ; NOT OK 28.7 kN ; OK for 1 m 65.7 kN ; OK for 1 m and 2 m
Flexural Bending	$\begin{gathered} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=5.7 \mathrm{kNm}\right) \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=11.3 \mathrm{kNm}\right) \end{gathered}$	$100 \times 100 \mathrm{~mm}$	9.58 kNm ; OK for 1m
Deflection	$(\mathrm{Max}=2.3 \mathrm{~mm})$	$100 \times 100 \mathrm{~mm}$	1.2mm Deflection; OK

3.6.4.2. Frame 2 Capacity Results

Table 152 Side Timber Support Member Capacities (FRAME 2)

Side Timber Support Member Capacities (FRAME 2)			
Capacity Tested	Ultimate Load	Dimensions Tested	Capacity Achieved
Compression	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=88.5 \mathrm{kN}\right) \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=172.1 \mathrm{kN}\right) \end{aligned}$	$225 \times 100 \mathrm{~mm}$ $125 \times 100 \mathrm{~mm}$ $75 \times 50 \mathrm{~mm}$	831.6 kN ; OK for 1 m and 2 m 393.9 kN ; OK for 1m and 2 m 86.9kN; OK for 1 m
Shear	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=16.5 \mathrm{kN}\right) \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=33.1 \mathrm{kN}\right) \end{aligned}$	$125 \times 100 \mathrm{~mm}$ $75 \times 50 \mathrm{~mm}$ $100 \times 100 \mathrm{~mm}$ $225 \times 100 \mathrm{~mm}$	36.1 kN ; OK for 1 m and 2 m 10.32kN; NOT OK 28.7 kN ; OK for 1 m 65.7 kN ; OK for 1 m and 2 m
Flexural Bending	$\begin{gathered} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=5.2 \mathrm{kNm}\right) \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{M}^{*}=\right. \\ 10.3 \mathrm{kNm}) \end{gathered}$	$100 \times 50 \mathrm{~mm}$ $125 \times 50 \mathrm{~mm}$	4.64 kNm ; NOT OK 7.45 kNm ; OK for 1 m
Deflection	$(\mathrm{Max}=2.3 \mathrm{~mm})$	$100 \times 100 \mathrm{~mm}$	1.2mm Deflection; OK

Table 153 Internal Timber Support Member Capacities (FRAME 2)

Internal Timber Support Member Capacities (FRAME 2)			
Capacity Tested	Capacity Tested	Dimensions Tested	Capacity Achieved
Compression	$\begin{gathered} 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=\right. \\ 94.0 \mathrm{kN}) \\ 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Nc}^{*}=\right. \\ 194.5 \mathrm{kN}) \end{gathered}$	$\begin{gathered} 200 \times 100 \mathrm{~mm} \\ 100 \times 100 \mathrm{~mm} \\ 50 \times 100 \mathrm{~mm} \end{gathered}$	527.2 kN ; OK for 1 m and 2 m 207.6 kN ; OK for 1 m and 2 m 100.6 kN ; OK for 1 m
Shear	$\begin{aligned} & 1 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=0.0 \mathrm{kN}\right) \\ & 2 \mathrm{~m} \text { Load-width }\left(\mathrm{Ns}^{*}=0.0 \mathrm{kN}\right) \end{aligned}$	$\begin{gathered} 125 \times 100 \mathrm{~mm} \\ 75 \times 50 \mathrm{~mm} \\ 100 \times 100 \mathrm{~mm} \\ 225 \times 100 \mathrm{~mm} \end{gathered}$	36.1 kN ; OK for 1 m and 2 m 10.32 kN ; OK for 1 m and 2 m 28.7 kN ; OK for 1 m and 2 m 65.7 kN ; OK for 1 m and 2 m
Flexural Bending	1m Load-width ($\mathrm{M}^{*}=$ 0.4 kNm) 2 m Load-width ($\mathrm{M}^{*}=$ 0.0 kNm)	$50 \times 100 \mathrm{~mm}$	4.01 kNm ; OK for 1m and 2m
Deflection	($\mathrm{Max}=8 \mathrm{~mm}$)	$\begin{gathered} 50 \times 100 \mathrm{~mm} \\ 225 \times 100 \mathrm{~mm} \end{gathered}$	104 mm Deflection; NOT OK 4.3mm Deflection; OK

Table 154 Timber Arch Support Member Capacities (FRAME 2)

Capacity Tested	Capacity Tested	Dimensions Tested	Capacity Achieved
	1 m Load-width $\left(\mathrm{Nc}^{*}=55.1 \mathrm{kN}\right)$	$225 \times 100 \mathrm{~mm}$	831.6 kN ; OK for 1 m and 2 m
	2 m Load-width $\left(\mathrm{Nc}^{*}=168.4 \mathrm{kN}\right)$	$125 \times 100 \mathrm{~mm}$	393.9 kN ; OK for 1 m and 2 m
		$75 \times 50 \mathrm{~mm}$	86.9 kN ; OK for 1 m
Shear	1 m Load-width $\left(\mathrm{Ns}^{*}=25.2 \mathrm{kN}\right)$	$125 \times 100 \mathrm{~mm}$	36.1 kN ; OK for 1 m and 2 m
	at $1.5 \mathrm{~d}=19.5 \mathrm{kN}$	$75 \times 50 \mathrm{~mm}$	10.32 kN ; NOT OK
	2 m Load-width $\left(\mathrm{Ns}^{*}=56.7 \mathrm{kN}\right)$	$100 \times 100 \mathrm{~mm}$	28.7 kN ; OK for 1 m
	at $1.5 \mathrm{~d}=37.2 \mathrm{kN}$	$225 \times 100 \mathrm{~mm}$	65.7 kN ; OK for 1 m and 2 m
Flexural	1 m Load-width $\left(\mathrm{M}^{*}=3.2 \mathrm{kNm}\right)$	$100 \times 100 \mathrm{~mm}$	9.58 kNm ; OK for 1 m
Bending	2 m Load-width $\left(\mathrm{M}^{*}=10.4 \mathrm{kNm}\right)$	$125 \times 100 \mathrm{~mm}$	11.98 kNm ; OK for 1 m and 2 m
Deflection	(Max $=1.5 \mathrm{~mm})$	$100 \times 100 \mathrm{~mm}$	0.7 mm Deflection; OK

3.6.4.3. Summary Conclusion

The summary of results illustrated in the sections above shows that there isn't much difference between Frame 1 and Frame 2 ultimate loadings, and that the capacities at a 1 m load width for most of the dimensions tested was satisfactory. The ultimate loadings for the larger; 2 m load width indicated that most trial member sizes had failed in shear and compression capacity checks.

The minimum size for all timber members for both 1 m and 2 m load widths and frame 1 and 2 are summarised in the tables below.

Table 155 Frame 1 Minimum dimensions (Hydro-Future)

Frame 1 Minimum Dimensions			
Member:	1m Load Width	2m Load Width	Governing Calculation
Dimensions:	Dimensions:		
Side Timber Support	$100 \times 50 \mathrm{~mm}$	$225 \times 100 \mathrm{~mm}$	Compression
Internal Support	$300 \times 100 \mathrm{~mm}$	$300 \times 100 \mathrm{~mm}$	Deflection \& Bolt
Timber Arch Support	$125 \times 100 \mathrm{~mm}$	$225 \times 100 \mathrm{~mm}$	Compression \& Shear

Table 156 Frame 2 Minimum dimensions (Hydro-Future)

	Frame 2 Minimum Dimensions		
Member:	1m Load Width		
Dimensions:	2m Load Width	Governing Calculation	
Side Timber Support	$100 \times 100 \mathrm{~mm}$	$225 \times 100 \mathrm{~mm}$	Compression
Internal Support	$300 \times 100 \mathrm{~mm}$	$300 \times 100 \mathrm{~mm}$	Deflection \& Bolt
Timber Arch Support	$125 \times 100 \mathrm{~mm}$	$225 \times 100 \mathrm{~mm}$	Compression \& Shear

The minimum sizes displayed in the tables above show that the member sizes between an applied load width of 1 and 2 metres does not vary drastically. Since these sizes remain fairly consistent, it is assumed that adopting the dimensions for Frame 2; Table 156 is acceptable for the final design. Load width 1 m required more material than load width 2 m , therefore load width $2 m$ is chosen for the final design which incorporates dimensions shown in Table 156.

3.7. Space Gass Output

The output from space gass for the critical, 2 m load widths for both frames is presented below.

3.7.1. FRAME 1 Space Gass Output (2m Load Width)

```
SPaCE GANS 12.23 - GTUDENT vERsIOM - HOT FOR COMMZRCIAL USE
Pach: E:S0sers\Michael Rerso\Desktop\STRUCTURAL S%PFORT SY5TEM C.}
Deaigner: Dat<: Friday, May 29, 2015 12:26 MM Dage: I
MNALYEIS STMTUS REPFOR
JuL Hadue ...... STRUCTURAL SUPFORT SYGTEN 0.5
Location ...... C:\Csers\thiciaacl Renku\Desktoo
```



```
M
Nodes ................................ 19 & 327651
mombers ................................... 24 i \ 32565
Platna . .....................................
BeatraLned nodes .........................
Nudes N|lh suring reslcsif
Secticn preperties
Material propertios
Constrarged nocles
Nember ozfsecz .....................................
Norie-Ioac:s
Prescribed rode ctap acements .....
Memper conc<ntrated _oads
terber distributed forces
Merser distributed torsions
Thnmal loses: ........
Plate pressure loads
Plate pressule loads.
Self weight losd vasus
Combination load zases
Lond cracs witr titlas
Lumpad masses .....
Spectral load caseg
Static aralysis
Dynmmio analyaia
Reamonse analysla
Buckling enalyeLs
111-cenditioned
*on-limanr bonvorzen:o
Frontwidth
Total degrees ol Ireedo
Static load caser
Mans loac casce
f 327655
i 32765
32765
32765
    5000)
        9991
32アも5
l 32TE51
[25.0000)
[25.0007
!2520021
| 2520001
[ 255000)
[ 2.5.0001
| 25:00001
(25%000)
(250000)
| 15000]
I 12006
& 1:0001
& 23000
-3-2me-
-12000
i 12000
NODE COORDINATEG :m)
\begin{tabular}{|c|c|c|c|}
\hline Nocle & Coond & Coord & coord \\
\hline 1 & 2.050 & 0.000 & 0.000 \\
\hline 2 & 8.080 & 0.600 & 0.000 \\
\hline 3 & 1.200 & 0.000 & 0.000 \\
\hline 4 & 1.250 & 0.600 & 0.700 \\
\hline 5 & 2.150 & 0.000 & 0.000 \\
\hline 6 & A.197 & 1.896 & 0. 0.00 \\
\hline 3 & ¢. 6.77 & 1.340 & 0.000 \\
\hline 9 & Z.120 & 1.300 & 0. 000 \\
\hline 10 & 8.825 & 1.613 & 0.300 \\
\hline 11 & 1.225 & 1.803 & 0. 2000 \\
\hline
\end{tabular}
```

12	1.657	1.900	0.000
13	2.543	1.900	0.000
14	2.975	1.303	0.000
15	3.375	1.613	0.003
16	3.723	1.340	0.003
17	4.003	0.996	0.000
18	0.825	0.000	0.003
19	3.375	0.000	0.003
21	2.103	1.000	0.003

[^0]SECTION PROPERTIES (mm, $\mathrm{mm}^{\wedge} 2$, $\mathrm{rm}^{\wedge} 4$, deg)

Sec=	Name			Nark	Stape		source	
1	225×100			51	Solid	rect	Austimb	
2	200×100			:2	Solid	rect	fustTimb	
3	300×300			53	Solid	rect.	Anstimb	
4	200×200			54	Solld	square	Lser	
	Area ul	Torsion	$\mathrm{Y}-\pi \times 15$		$z-7 \times 1 z$	Y-Rxis	$z-3 \times 13$	Prane
Secz	Section	Constant	Mom of In	n Mom	of In	Shr Area	Shz Area	Angle
1	$2.2500 \mathrm{E}-04$	3. $4068 \mathrm{E}+07$	2.8750E+C7	7.9 .492	$22 \mathrm{E}+07$	Infinite	Infirite	0.03
2	2.00COE +04	4. $5775 \mathrm{E}+07$	2.5667E-C7	76.66	$67 \mathrm{E}+07$	Infinite	Infirite	0.00
,	7. 50COE +04	$7.7484 \mathrm{E}+08$	$3.9062 \mathrm{E}-\mathrm{CS}$	3,625	$50 \mathrm{E}+08$	Infinite	InEirite	0.00
4	4.00COE +04	$2.2496 \mathrm{E}+08$	-. 3333 E -08	8 1.33	$33 \mathrm{E}+08$	Infinite	Infirite	0.00

Sect	Shape	Trans	Mir	Rotate	3	$\mathrm{Bt} . / \mathrm{Bb}$		Tt./Tb	$\mathrm{FW} / \mathrm{Rr}$
1	Solid zoct	No	No	0.00	225.09	100.00	0.00	0.00	0.00
						0.00	0.00	0.00	0.00
2	Solid rect.	No	No	0.20	200.00	100.00	0.00	0.00	0.00
						0.00	0.30	0.00	0.00
3	Solld rect	No	N०	0.20	300.00	250.00	0.20	0.00	0.00
						0.00	0.30	0.00	0.00
4	Solid square	No	No	0.00	200.00	0.00	0.20	0.00	0.00
						0.00	0.30	0.00	0.00

MNTERIAL PROPERTIES (MPa,T/r^3, struin/dicgC)

MEMBEL DISTRIBUTED YokeES ($\mathrm{m}, \mathrm{kN} / \mathrm{m}$)

NEMBER FORCES AND MOVENTS (kN , kEr)

Load case 1 (Not analysed): self-Weight, support (G)

Goad ease 2 (Not analvsed) : Soil Load (C)

Load case 3 (Not analysed): Traffic (LL)
Load case $\&$ (Not analysed): Culvert Self-neight (G)
Goad sase 10 (Tirear): Combinea Tichanivig

Semb	Node	Axial Force	Y-Axis Shear	Z-Axis Shear	$x-R x i=$	$Y-R x i s$ Morent	$2-\mathrm{Axis}$ Monent
1	1	97.750	0. oco	0.600	0.000	0.000	0.000
	2	97.298	-33.120	0.000	0.900	0.000	-10.296
3	7	97.750	0.000	0.000	0.000	0.000	0.000
	4	97.298	33.120	0.000	0.000	0.000	10.296
5	21	104.771	0.000	0.600	0.000	0.000	0.000
	9	104.284	0.000	0.090	0.000	0.000	0.000
6	22	133.205	0.000	$0 . \cos$	0.200	0.000	0.000
	5	133.74 ?	0.000	0.000	0.000	0.000	0.000
7	9	82.222	52.119	0.000	0.000	0.000	-7. 347
	13	60.356	-2.668	0.000	0.000	0.000	3.600
B	21	53.510	3.155	0.600	0.900	0.000	-1.290
	14	53.075	2.682	0.000	0.900	0.000	2.175
9	2	110.104	50.469	0.000	0.000	0.000	-11.340
	ϵ	73.559	10.768	0.000	0.900	0.800	1.764
10	ϵ	69.533	26.045	0.690	0.900	0.000	1.764
	7	46.679	-15.195	0.000	0.000	0.000	4.058
11	7	48.878	-4.553	0.600	0.000	0.000	4.65\%
	1 C	34.897	-50.965	0.000	0.000	0.000	-7.960
12	16	81.547	37.134	0.000	0.000	0.000	-6.991
	11	77.193	-16.310	0.000	0.000	0.000	-2.184
1.3	11	30.833	46.207	0.690	0.900	0.000	-4.359
	12	59.464	-10.677	0.090	0.000	0.000	3.600
14	12	60.356	2.668	$0 . \cos$	0.000	0.800	3.600
	9	82.222	-52.119	0.000	0.500	$0 . \mathrm{EcO}$	-7.347
15	12	39.464	10.677	0.090	0.900	0.000	3.600
	14	50.833	-46.207	0.000	0.000	0.000	-4.359
16	14	$\because 7.193$	16. 310	0.600	0.500	0.600	-2.184
	16	81.54 ?	-37.134	0.000	0.900	0.000	-6.991
17	15	34.897	50.565	0.600	0.000	0.000	-7.960
	16	48.878	4.553	0.000	0.900	0.000	4.058
18	1ϵ	46.679	15.195	0.090	0.900	0.000	4.058
	17	69.533	-26.045	0.000	0.900	0.000	1.764
19	17	73.559	-10.163	0.600	0.000	0.000	1.764
	6	110.104	-50.409	0.050	0.900	0.000	-11.340
20	21	53.510	3.155	0.090	0.900	0.000	-1.290
	11	53.075	2.682	0.000	0.000	0.000	2.175
22	1 C	86.770	0.935	0.600	0.900	0.000	-0.970
	18	87.643	0.935	0.000	0.900	0.000	0.539

23	13	37.881	2.486	C.000	0.000	0.000	--. 265
	2	37.556	2.039	C. 000	0.000	0.000	-. C44
25	15	86.720	-0.935	C. 000	0.000	0.000	0.970
	19	87.643	-0.935	c. 000	0.000	0.000	-0.539
26	19	37.881	2.486	C. 000	0.000	0.000	- -.265
	4	37.556	2.039	C. 000	0.000	0.000	-.044
27	21	38.680	-0.523	0.000	0.000	0.000	0.681
	19	39.227	-1.213	c. 000	0.000	0.000	-3.726
28	21	38.686	-0.523	c. 000	0.000	0.000	0.681
	18	39.227	-1.213	C. 000	0.000	0.000	-0.326

NODE RZACTIONS ($\mathrm{kN}, \mathrm{kNm}$)

3.7.2. FRAME 2 Space Gass Output (2m Load Width)

```
BPACE GRSS 12.23 - STUDENT VERSION - NOT FOR COMMERCIML USE
Path: C:\Users\MLchael R...\Deaktop\STRUCTURAL SUPPORZ SYSTDM {2ND ARCH} 0.5
Designer: Date: Eriday, May 23, 2015 12:01 AM Page: I
ANAJYBLS STATUS REPORU
JEb rame ...... STRUCTURAL SUPACRT SYSIEM (2ND ARCH) 0.5
LacaIIon ...... C:\Users \Michael Renko\Desktop
Lengta untts ....................................
Soction property units ..........................
```



```
Mass donsity units . . . . . . . . . . . . . . . . . T/m^3
```



```
Force umits ................................ kll
```



```
Mass units ............................. T
Accelerattor units ...................... g's
Tranalation units ......................, nm
```



```
Nedes ..................................... 18 ( 32765:
Menbers ...................................... 21 ( 32765;
plates ............................................. 0 &2755:
```



```
Nades with spying restraints .......... 0 & 32365:
soction propertios
(5000:
Material propertios
(999:
( 32765:
( 32765)
Node Loads .................................
Prescribed node displacements
(250000)
(250000:
(250000:
(250000:
(250000)
(250000)
( 250000)
(250000:
( 10000:
( 10000:
( 10000:
( 2500D0:
(10000)
10000:
( 10000:
```

NODE COORDINATES $\{\mathrm{m}$]

	γ Node	γ coord	2 coord
1	0.000	0.000	0.000
2	0.000	0.600	0.000
3	4.200	0.000	0.000
4	4.200	0.600	0.009
5	2.100	0.000	0.000
6	0.197	0.996	0.000
7	0.477	1.340	0.000
4	2.100	1.900	0.000
10	0.825	1.613	0.000
11	1.225	1.803	0.000

12	1.657	1.900	0.000
13	2.543	1.900	0.000
14	2.975	1.803	0.000
15	3.375	1.613	0.000
16	3.723	1.340	0.000
17	6.003	0.996	0.000
18	0.825	0.000	0.000
21	2.100	1.000	0.000

MEMBER LATA (deg, kNm/rad,mi
---"------- (F-Fixed, R-Released) (t-Cable length)


```
    1 \text { EFEFRR}
    3 REFRRR
    5. RFFRRR
    18 RHFRRR
```

NODE RESTRAINTS (kN/m, kJm/rad
$\ldots\left(\mathrm{t}-\mathrm{tixed}, \mathrm{K}-\mathrm{Released}\right.$, S-sprirg, ${ }^{\text {t-General) }}$
Reat X Bxial Y Axial ZAxial X Rotation Y Fotation z Rotation
Node Code Stiffness Stiffness Stiffness stiffness stiffness stiffress
SECTION PROEERTTES (π, $\operatorname{mm}^{2} 2, \operatorname{mm}^{\wedge} 4$, dea)

Sact	Name			Mar<	Shappe	Sonrese				
1	225×100			51	Sol1d	rect		Rustitimb		
2	200×100			\$2	Solid	rect		Aus-Timb		
3	300×300			\$3	Solid	roct		AustTimb		
4	200×200			54	Solid	scruare		Usbr		
	Brea of	Forsion	$y-8 \times 15$		$8-1025$	Y-7xis			2-10xis	Princ
Sect	Sertion	Constant	Mom of In	Mr	of In	Sir Aren			Sibr Aras	Angle
1	$2.2500 \mathrm{E}+04$	5.40683+07	1.87508+07	9.29	222E+07	Infinite			Infinite	2.00
2	2.0000E+04	$4.57758+07$	1. $6667 \mathrm{E}+07$	¢. $\frac{1}{6}$	662E+07	Infinita			Infinite	7.00
3	7.5000E+04	7. $74848+08$	$3.70628+08$	5,62	250E+08	Infinite			Infinite	7.00
4	$4.00008+04$	$2.24965+08$	$1.33335+08$	1.3	336 +08	Infinite			Infinite	3.00
Sect	Shape	Trans	Nir Rotato		D	$\mathrm{Bt} / 2 \mathrm{p}$	$\mathrm{B}=\mathrm{N} /$	/8bia	- Tt/Tb	$\mathrm{T} w / \mathrm{Rt}$
1	Solid rect	No	No 3.00	10	5.00	100.00		0.00	0.00	3.00
						0.00		0.0 C	0.00	0.00
2	Solid rect	No	No 0.00	020	0.00	100.90		2.00	0.00	5.00

3	Solid	ract	No	No	0.90	300.00	0.00	0.00	0.00	0.00
							250.00	0.00	0.50	0. 05
							0.00	0.00	0.00	0.00
4	Solid	square	30	No	3.00	200.00	D. 00	0.00	9.00	0.00
							D.00	0.03	1. 0.00	D. 00

MATERIAL PROPEFTIES (MPa, $5 / \mathrm{m}^{\wedge} 3$, зtrainidegC)

MEMEER DESIRIBUTED FORCBS $\operatorname{lm}, \mathrm{kN} / \mathrm{n}$;

10	1	GI	0.0008	100.c00\%	3.000	-7.000	0.000
					5.000	-12.050	0.000
11	1	GI	0.0003	100.000\%	5.000	-22.000	0. 000
					E.000	-19.000	0.000
12	1	GI	0.0003	100.0003	f.000	-29.000	0.000
					9.000	-24.000	0.000
13	1	GI	2,0005	100.0003	9.000	-24.000	0.000
					10.500	-29.000	0.000
1.4	1	S1	2,0003	100.0008	10.500	-29.200	0. 000
					12.000	-29.000	0.000
15	1	GI	0.0003	100.0003	-10.500	-29.000	0.000
					-9.000	-24.000	0.000
16	1	GI	0.0003	100.000%	-9.000	-24.000	0.000
					-f.000	-19.000	0.000
17	1	-1	2.0003	100.0008	-6.000	-19.200	0.000
					-5.000	-12.000	0.000
1 \%	1	G1	2.0009	100.000s	-5.000	-12.000	0.000
					-3.000	-7.000	0.000
19	1	GI	0.0003	100.0003	-3.000	-7.000	0.000
					-2.000	-4.000	e. 000
1	1	61	2.0003	100.0008	0.000	-0.960	0.000
					c. 0.001	-0.960	0.000
3	1	GI	2. 0005	100.000\%	0.000	-D. 280	0.000
					0.000	-0.060	0.000
7	1	GI	0.0003	100.0008	0.000	-2.060	0.000
					0.000	-0.950	0.000
9	1	\%1	0.0003	100.0003	0.000	-0.060	0.000
					0.000	-0.050	0.000
10	1	cI	0.0005	100.0008	c.000	-2.050	0.000
					0.000	-0.060	0.000
11	1	OI	0.010%	100.000\%	c. 0.000	-0.060	0.000
					0.000	-0.060	0.000
12	1	G1	0.0003	100.0003	0.000	-0,960	0,000
					0.000	-0.050	0.000
17	1	Si	9,0003	100.0008	0.000	-3.060	0.000
					0.000	-0.960	0.050
14	1	GI	0.0009	100.000\%	0.000	-2.950	0.000
					0.000	-0.060	0.000
15	1	GI	0.0003	100.0008	0.000	-0.050	0.000
					0.000	-0.080	0.000
16	1	61	0.0003	100.0008	0.000	-0.260	0.000
					0.000	-2. 050	0.000
17	1	GI	0.0003	100.000%	0.000	-0.950	0.000
					0.000	-0.060	0.000
18	1	GI	0.0003	100.0009	0.000	-0.050	0.000
					0.000	-0.960	0.000
19	1	GI	0.0003	100.0008	0.000	-0.050	0.000
					c. 1000	-2.050	0.000

Load	$\mathrm{x}-\mathrm{axis}$	Y-Axis	z-Axis
Case	Accel'a	Accel' n	Aucel' n
1	0.000	-1.000	0.000

COMBINBTION LOAD CASES

Load case 10: Comblned Loadng
2.400 * Load case 1: Self-Ne1ght, Support (G)
2.400 * Load caso 2: Soil Load (C)
3.000 * Load case 3: Trafftc (LI)
2.400 * Load case 4: Culvert Self-Weight (G)

LOAD CASE TITLES

Load
Case Iitle
Self-Weight, Suppoct (G)
Soil Load \{G)
Traffic 〈LJ〉
Culvert Selt-Nelght (C)
Combined Loading
$1.2 G+1.5 \mathrm{G}$

NODE DISPLACEMENTS (nm, rad)

MEMEER FORCES SND MOMENTS (kN, kNn)

Load case 1 (Not analysed): Self-Weight, Support (G)

Load case 2 (Not anglysed): Soil Load (G)
Load case 3 (Not anazysed): Traffic (LL)

Load case 4 (Not ana-ysed): Culvert Selt-iNe1ght \{G;
Load caye 10 (IL:zeat) : Eumbimed Loading

Memb		Axial	Y-rxie	2-nxie	X-7xie	Y-rxie	2-ruxis
	Nede	Force	Sheaz	Shear	Torston	Moment	Moxent
1	1.	74.669	0.000	0.000	0.090	0.000	0.000
	2	78.217	-33.120	0.000	0.000	0.000	-10.296
3	3	172.047	0.000	0.000	0.090	0.000	0.000
	4	171.595	33.120	0.000	0.090	0.000	10.296
5	21	103.392	0.723	0.000	0.000	0.000	-0.358
	9	102.904	0.723	0.000	0.000	0.000	0.292
6	21	193.993	0.000	0.000	0.000	0.000	0.000
	5	194.534	0.000	0.000	0.050	0.000	0.000
7	9	64.360	49.025	0.000	0.090	0.000	-7.649
	13	42.495	-5.771	0.000	C.000	0.000	1.924
B	21	115.438	-0.321	0.000	0.000	0.000	-0.353
	14	115.003	-0.795	0.000	0.090	0.000	-1.016
9	2	96.210	53,787	0.000	0.000	0.000	-12.115
	6	59.665	13.486	0.000	0.000	0.000	2.464
10	6	55.236	26.283	0.000	0.000	0.000	2.464
	7	32.382	-14.957	0.000	0.000	0.000	4.884
11	7	34.879	-7.466	0.000	0.090	0.000	4.8e4
	20	20.898	-53.676	0.000	0.000	0.000	-8.425
12	10	69.279	34.321	0.000	0.090	0.000	-5.B57
	11	64.925	-19.122	0.000	0.000	0.000	-3.295
13	11.	33.734	48.287	0.000	0.090	0.000	-5.107
	12	42.365	-8.597	0.000	0.050	0.000	3.774
14	12	43.219	0.934	0.000	0.000	0.000	3.774
	9	65.084	-53.852	0.000	0.090	0.000	-7.941
15	13	42.723	3.721	0.000	0.090	0.000	1.924
	14	34.692	-53.164	0.000	0.090	0.000	-7.115
16	14	86.862	61.934	0.000	0.000	0.000	-10.131
	15	93.217	8.450	0.000	0.000	0.000	5.263
17	25	89.054	28.791	0.000	0.090	0.000	3.263
	16	103.045	-17.220	0.000	6.000	0.000	7.641
18	26	104.309	5.873	0.000	0.000	0.000	7.641
	17	127.153	-35.367	0.000	0.090	0.000	1.220
19	25	131.820	-6.522	0.000	0.090	0.000	1.220
	4	168.373	-46.823	0.000	0.090	0.000	-10.296
20	21	62.969	2.720	0.900	0.990	0.000	-1.237
	11	62.534	2.246	0.000	0.090	0.000	1.811
22	10	89.900	1.595	0.000	0.000	0.000	-1.568
	28	90.773	1.595	0.000	0.000	0.000	1.005
23	1 B	50.127	3.65 E	0.000	0.090	0.000	-1.685
	2	49.802	3.211	0.000	0.090	0.000	1.819
28	2.1	51.092	-0.33E	0.000	0.090	0.000	0.426
	12	51.634	-1.020	0.000	0.000	0.000	-0.6E1

NOOE REMCTTSNS (xN, kNm)

```
Load case 1 (Not ana-yeed): Self-Weagnt, Support (G)
Lgac) case 2 (Not mralysed): Soil Load (G)
Load case 3 (Not analyaed): TraEfic (LI)
Load saэe 4 (Not analyaed): Culvert Self-Walght (G)
L[ad Eave 10 (Linear): Combined Loadimg
```

	$\mathrm{X}-\mathrm{AX}-3$	Y-7x13	z-Rxia	$\mathrm{X}-\mathrm{Axis}$	Y-R*ie	2-2x1s
Nocle	Eorce	Force	Force	Mcaent	Moment	Moment
\pm	0.000	78. 669	0.000	0.0010	0.000	0.000
3	0.000	172.047	0.000	0.000	0.000	0.200
5	0.000	294.534	0.000	0.090	0.000	0.200
18	0.000	155.886	0.000	0.000	0.000	0.000
Ioad	3.000	-601.135	0.008	0.000	0.000	0.000
Reac	0.000	601.135	D.0011	0.000	0.000	0.1100
Eruil	1.547玉-13	$0.0008+00$	$5.898 \mathrm{E}-18$			
Resid	$2.061=-23$	$2.9848-13$	2.430E-10	1.573E-19	$78 \mathrm{E}-19$	798E-14

3ILL OF MATBRIALS (m, m^2, 2)

Yemb	Sect	Qty	Saction Nane	Unit Length	Total	Unit Mass	$\begin{aligned} & \text { Total } \\ & \text { Mass } \end{aligned}$
1	1	2	225×100	0.600	1.200	0.016	0.031
2	2	1	200×100	0.900	0.900	0.021	0,021
3	2	1	200×100	1.000	2.000	0.023	0,023
4	1	12	225×100	0.443	5.313	0.011	0.137
5	2	2	200×100	1.187	2.375	2.027	0.055
6	2	1	200×100	1.613	1.613	0.037	0.037
7	2	1	200×100	1.020	2.020	0.023	0.023
8	2	1	209×100	1.620	1. 620	0.037	0.037

Teta mass - 0.365
Center of urav_Ly $-1.797,1.061,0.000$

12	2.637	1.900	0.000
13	2.543	1.900	0.000
14	2.975	1.803	0.000
15	3.375	1.613	0.000
16	3.723	1.340	0.000
17	4.003	0.996	0.000
18	0.825	0.000	0.000
19	3.375	0.000	0.000
11	2.100	1.000	0.000


```
NODE EこSTRAINTS (kN/m,kNx/rad)
----------- (F=Fixed, R=Released, S=Sprinq, *=Gөnera`)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Note & Code & Stiffness & Stiffress & St:EEttess & Stiffukss & S1irtuln & \\
\hline & & & & & & & \\
\hline
\end{tabular}
    1 FEEERF
    3 EFERRR
    5. REERRR
    1& RFFRRR
    19 REERRR
```

SECIION EROEERZIES (mm, $\pi \pi \wedge^{\wedge} 2, \operatorname{man}^{\wedge} 4$, deg)

Sect Name	Kark	Stape	Sourea	
1	225×100	$S 2$	Solid rect	AustTimb
2	200×100	$S 2$	Solid reat	Austimb
3	300×300	33	Solid rect	Austimb
4	200×200	34	Solid square	User

	Area of	Torsion	Y-Axis	$2-8 x i=$	Y-Hxis	2-Axis	Princ
Sect	Section	Constant	Mom of In	Mom of In	Shr firee	Shr Mred	Angle
1	2. $2500 \mathrm{E}-614$	5.4068E+07	1.87505+07	9.4922E+37	Inf:rite	Infinite	0.00
2	2. 2000 E 04	4.5775E107	1.66572107	6. $6667 \mathrm{E}+07$	Inf-nite	Infinite	0.00
3	7. $5000 \mathrm{E}-04$	7.7484E+08	3.91) $920+08$	5. $6250 \mathrm{C}+03$	Inf-rite	Infinite	0.00
4	4. $2000 E+04$	2. $2496 \mathrm{E}+08$	1.3333E+0B	- 3333E+23	Inf:rite	Infinite	0.00

4. Appendix 4

4.1. DPTI Data

4.1.1. Botanic Road/Hackney Road

4.1.1.1. \quad Turning Movement Survey

4.1.1.2. Intersection Drawing

4.1.1.3. SCATS Summary

TS074 - Botanic Rd / Dequetteville Tce / Hackney Rd / North Tce

PHASING OPERATION:

- Leading Trailing Turn on Hackney Rd and Dequetteville Tce (except AM peak where it runs a leading turn) and Leading Turn from North Tce (east approach)
- Phasing runs A, D, E, G1 in AM peak and A, C, D, E, B at all other times
- Bus turning right from Hackney Rd extends A phase, and calls and extends G1 phase in AM \& calls B phase at all other times

TURNING MOVEMENT OPERATION:

- NRT from Dequetteville Tce. M-F 7am-9am - fully controlled at all other times
- RT from Hackney Rd filters M-F 7am-9am
- RT from North Tce into Hackney Rd filters 7-9 am \& 4-6pm M-F and late night off peaks
- No right turns from Botanic Rd into Dequetteville Tce. except for buses.

PHASE PERCENTAGE DURING PEAK PERIODS:

- A phase (Hackney Rd / Dequetteville Tce.) is the stretch phase except AM peak
- In the AM peak E phase (Botanic Rd/ North Tce.) is the stretch phase
- Average phase time between May $6^{\text {th }}-$ May $8^{\text {th }} 2014$ is:

Period	Time	Ave CL	A	B	C	D	E	G1
AM	$0745-0845$	120 s	35 s	-	-	28 s	37 s	20 s
BUS	$1400-1500$	119 s	25 s	22 s	12 s	26 s	34 s	-
PM	$1645-1745$	120 s	27 s	16 s	12 s	18 s	46 s	-

LINKING:

- TS074 is linked to TS075 (Payneham Rd, Magill Rd, North Tce)
- TS072 (Dequetteville Tce / Rundle Rd) is linked to TS074

INTERGREEN TIME:

- Phase A, B, C \& G have 6.5 seconds of intergreen time (Yellow $=4.0 \mathrm{~s}$, Red $=2.5 \mathrm{~s}$)
- Phase D, E \& F have 7.0 seconds of intergreen time (Yellow $=4.0 \mathrm{~s}$, Red $=3.0 \mathrm{~s}$)

PHASE SKIPPING

- None

CYCLE TIME:

- Maximum cycle time is 120 s

WALKING TIME

Pedestrian	Parallel Vehicle Phase	Time Required
P1	A, B, G1	23 s
P2	A, C	21 s
P3	E	32 s
P4	D, E, F	33 s

SITE GRAPHICS

TABLE: SCATS Maximum Flow recorded on May 8 ${ }^{\text {th }}, 2014$:

Detector No	Maximum Flow
1	1500
2	2000
3	2150
4	1350
5	2250
6	1900
7	2100
8	2150
9	1700
10	1850
11	2000
12	1800
13	1800
14	2250
15	2050

Note: SCATS Maximum Flow is just an indication of the lane Saturation Flow which may vary during time of day and not necessarily same as traditional Saturation Flow (as per definition) used in Modelling Packages
4.1.2. Dequetteville Terrace/Flinders Street
4.1.2.1. \quad Turning Movement Survey
MICRELMO
TVONTO-vito.

Aem Ruad Namber - Name
Coill NINT IOWNT
Loovily KLNT IOWN
AM.KG Redrence TCa24305
Dobe of Count 28062011
Weatter D
Dap: Tuenday
Contore SIGNLS

			1		2		3		4
$\begin{aligned} & \text { One- } \\ & \text { nay } \\ & \text { flow } \end{aligned}$	11 Howr Totals	(18) 5253	(OUT) 6769	(1N) 9534	(OUT) 8580	(iv) 9942	(OUT) 99062	(190) 10143	(OUT) 10618
	Mat Peak Hour	07/45 1018	11:45 559	07:45 1189	08:00 955	$06.15 \quad 823$	07:45 1597	08.00 1324	08:16 1258
	Pat Prow Hors	16:30 420	16:45 1112	14.45 1008	17:00 sat	17:60 1623	17:50 305	15:90 1125	$18.45 \quad 1228$
$\begin{aligned} & \text { Two- } \\ & \text { Fay } \\ & \text { Flow } \end{aligned}$	Asa Prow How	08:50	1509	07:45	2120	00:00	2353	07.45	2570
	Pas Pook Howr	16.45	1523	17:00	1992	17:00	2628	17.00	2308
N Veticies	11 Hour Totas	12022	2.65 CV	18111	$4.0 \% \mathrm{cV}$	1884	1.90 cV	20761	3.5\% CV
	Estmined MADT	$15700 \mathrm{sF}(1.80)$ 2F(1.31)		$23700 \mathrm{SF}(1.009$ 2F(1.31)		$24700 \mathrm{BF}(1.00) \mathrm{ZF}(1.31)$		27200 SF(1.00) 2F(1.31)	

4.1.2.2. Intersection Drawing

4.1.2.3. SCATS Summary

TS154 - Bartels Rd/ Dequetteville Tce/ Flinders St

SITE DETAILS:

- Running phase sequence B, A, C, D, E (F and G not used)
- Bus (SG8) runs in late start of D or E phase.

RIGHT TURN MOVEMENT OPERATION:

- Bartels Road west approach filters at all times
- Dequetteville Tce south approach filters during standard after hours times.
- Dequetteville Tce north approach does not filter.

PHASE PERCENTAGE DURING PEAK PERIODS:

- A phase (Dequetteville Tce) is the stretch phase
- Average phase time between May $20^{\text {th }}-$ May $22^{\text {nd }}, 2014$

Period	Time	Ave CL	A	B	C	D	E
AM	$0800-0900$	120 s	30 s	23 s	13 s	$14 \mathrm{~s}^{*}$	40 s
BUS	$1400-1500$	102 s	31 s	17 s	15 s	16 s	23 s
PM	$1645-1745$	120 s	29 s	20 s	19 s	21 s	30 s

*D phase skipped every $3^{\text {rd }}$ cycle during AM peak, when D is skipped; C will get D phase time till it gapped out, E will get part of D phase time. Minimum D phase time is $\mathbf{1 4 s}$
**Bus runs in late start of D/E phase, bus clearance time is $2 s$ before SG3 runs; bus phase minimum green time is 5 s , maximum green time is 10 s . Bus phase activated $\mathbf{4}$ times during AM peak; $\mathbf{3}$ times during BUS peak, and $\mathbf{2}$ times during PM peak

LINKING:

- TS154 is linked to TS072 (Rundle St / Rundle Rd / Dequetteville Tce).
- In business hours it is not linked to TS072 to allow lower CL
- TS073 (Fullarton Rd / The Parade / Flinders St) is linked to TS154.

INTERGREEN TIME:

- A, B \& C Phase has 7 seconds of intergreen time (Yellow $=4 s$, Red $=3 s$)
- D \& E phase has 8 seconds of intergreen time (Yellow $=4 \mathrm{~s}$, Red $=4 \mathrm{~s}$)

PHASE SKIPPING:

- D phase skipped every $3^{\text {rd }}$ cycle during AM 0730-0900 Mon-Fri.

CYCLE TIME:

- Maximum cycle time is 120 seconds

PEDESTRIAN TIMES:

Pedestrian	Parallel Vehicle Phase	Time Required
P1	A, B	22 s
P2	A, C	27 s
P3	D, E	35 s
P4	C, E	14 s
P5	B, D, E	22 s

SITE GRAPHIC

TABLE: SCATS Maximum Flow recorded on 08/05/2014

Detector No	Maximum Flow
$\mathbf{1}$	1850
$\mathbf{2}$	1900

Note: SCATS Maximum Flow is just an indication of the lane Saturation Flow which may vary during time of day and not necessarily same as traditional Saturation Flow (as per definition) used in Modelling Packages.

3	1850
4	2050
5	1850
6	1750
7	1650
8	1600
9	1650
10	2350
11	1550
12	1700
13	1650
15	1750

4.1.3. Dequetteville Terrace/Rundle Street
4.1.3.1. \quad Turning Movement Survey

4.1.3.2. Intersection Drawing

4.1.3.3. SCATS Summary

TSO72 - Rundle St / Dequetteville Tce/ Rundle Rd

SITE OPERATION:

- Leading Trailing Turns for Rundle St and Dequetteville Tce.
- Running phase sequence: $A, B, D, E, F, C, G 2 ;{ }^{\prime} C$ ' is Bus phase
- Bus can run in C and late start of D, F phase

TURNING MOVEMENT OPERATION:

- Rundle St (east) RT filters full time.
- All other RTs are fully controlled

LINKING:

- TS072 is linked to TS074 (Botanic Rd / Dequetteville Tce / Hackney Rd).
- TS154 (Bartels Rd / Dequetteville Tce / Flinders St) is linked to TS072.

PHASE PERCENTAGE DURING PEAK PERIODS:

- B phase is stretch phase during AM peak
- A phase is normally stretch phase at all other times
- Average phase times between May $6^{\text {th }}-$ May $8^{\text {th }} 2014$:

Period	Time	Ave CL	A	B	${ }^{*} \mathbf{C}$	D	E	$* \mathbf{F}$	G2
AM	$0815-0915$	120 s	26 s	24 s	-	13 s	23 s	16 s	17 s
BUS	$1400-1500$	119 s	26 s	25 s	-	17 s	20 s	16 s	15 s
PM	$1630-1730$	120 s	35 s	19 s	-	17 s	19 s	16 s	14 s

Note: \quad AM Peak - C ran $\underline{\mathbf{3}}$ times and Fran $\underline{16}$ times out of 28 cycles; PM - C ran $\underline{\mathbf{3}}$ times out of 29 cycles
*Bus phase runs the maximum green time of $5 s$, and clearance time of 3 s . Bus SG is activated 6 times during AM peak, 6 times during BUS peak, and 7 times during PM peak

INTERGREEN TIME

- A phase has 6.5 seconds of intergreen time (yellow $=4 \mathrm{~s}$, red $=2.5 \mathrm{~s}$).
- B, C, D, E, F and G2 phase has 7 secs of intergreen time (yellow $=4 \mathrm{~s}$, red $=3 \mathrm{~s}$).

PHASE SKIPPING

- None

CYCLE TIME

- Maximum cycle time for TSO72 is 120 seconds

WALKING TIME:

Pedestrian	Parallel Vehicle Phase	Time Required
P1	A, B	20 s
P2	A, G2	26 s
P3	D, E	29 s
P4	E, F	32 s

SCATS GRAPHICS:

TABLE: SCATS Maximum Flow recorded on $8^{\text {th }}$ May, 2014

Detector No	Maximum Flow	Note: SCATS Maximum Flow is just an
1	1800	indication of the lane Saturation Flow which
2	1650	may vary during time of day and not
3	1950	

| $\mathbf{4}$ | 1600 | necessarily same as traditional Saturation |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | 1500 | Flow (as per definition) used in Modelling |
| $\mathbf{6}$ | 1950 | Packages. |
| $\mathbf{7}$ | 2050 | |
| $\mathbf{8}$ | 2100 | |
| 9 | 1800 | |
| 10 | 1700 | |
| 11 | 1800 | |
| 12 | 1500 | |
| 13 | 1600 | |
| 14 | | |
| 15 | | |

4.1.4. East Terrace/Botanic Road

4.1.4.1. Turning Movement Survey
smoremo
TVOET0-10.09
Itarsection of BOTANC ROND / NORTH TERPWCE / EAST TERRACE
Sociey AOCLNDE
Locrify AOELAOE
AMG Reference TG816320
Ovie of Cont. 01042015
Whather t
Survey Slatr

	Am Extten	1		2		3	
		$2($.	3	$3 \mathrm{~L})$	160	1	210
$\begin{aligned} & 11 \text { hour } \\ & \text { fotals } \end{aligned}$	Cas	4106	8393	2223	1935	Ta72	2317
	cy	200	764	373	223	742	216
	Total	4306	2647	2508	2158	telt	2533
	Con	684	1252	215	164	583	174
	CV	33	113	42	45	77	21
	Tota	697	1365	257	209	600	195
$\begin{aligned} & \text { FulFsek } \\ & \text { houn } \\ & 16.45 \% \end{aligned}$	Cos	338	627	232	277	1242	274
	CV	30	61	39	29	94	23
	roted	376	6a8	261	306	1336	297

		1		2		3	
$\begin{aligned} & \text { Cow- } \\ & \text { moy } \\ & \text { Flows } \end{aligned}$	11 Hour Totes	(170) 13053	(0uT) 10772	(0N) 4754	fout) 6839	(190) 11147	(OUT) 12243
	As, Peak Howr	05:00 2062	11:45 876	08.15 489	06:00 892	11:45 995	08:00 1622
	P4A Feak hour	14:15 1187	16:45 1642	17:00 573	17:09 <43	16:45 163	16:30 1069
	Ast Prak Howr	08-00		08:00	1358	06.50	2477
flows	Pas Prakh Hoss	16.48	2706	17.60	1256	16.45	2582
α Nothoien	11 Hour Totats	24725	7.45cy	11593	8 mF cV	23390	3.05 cV
	Einmated AMDT	$31900{ }^{5} F(1.50) \text { ZF }(1.29)$		15000 SF(1.00) 2F(1.29)			

MDT - Annual Aisesoge Doly Tratte SF - Seasonal Factor EF - Zone Factor CV - Commercial Vehid
4.1.4.2. Intersection Drawing

4.1.5. Fullarton Road/The Parade
4.1.5.1. Turning Movement Survey

4.1.5.2. Intersection Drawing

[^0]: 1 FFFPRR
 3 RFFRRR
 3 REFRRR
 18 REFRRR
 19 REFRRR

